The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/consensus/consensus_service.go

541 lines
18 KiB

package consensus
import (
"math/big"
"sync/atomic"
"time"
"github.com/harmony-one/harmony/crypto/bls"
"github.com/ethereum/go-ethereum/common"
protobuf "github.com/golang/protobuf/proto"
bls_core "github.com/harmony-one/bls/ffi/go/bls"
msg_pb "github.com/harmony-one/harmony/api/proto/message"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/consensus/quorum"
bls_cosi "github.com/harmony-one/harmony/crypto/bls"
"github.com/harmony-one/harmony/crypto/hash"
"github.com/harmony-one/harmony/internal/chain"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/multibls"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
"github.com/pkg/errors"
"github.com/rs/zerolog"
)
// WaitForNewRandomness listens to the RndChannel to receive new VDF randomness.
func (consensus *Consensus) WaitForNewRandomness() {
go func() {
for {
vdfOutput := <-consensus.RndChannel
consensus.pendingRnds = append(consensus.pendingRnds, vdfOutput)
}
}()
}
// GetNextRnd returns the oldest available randomness along with the hash of the block there randomness preimage is committed.
func (consensus *Consensus) GetNextRnd() ([vdFAndProofSize]byte, [32]byte, error) {
if len(consensus.pendingRnds) == 0 {
return [vdFAndProofSize]byte{}, [32]byte{}, errors.New("No available randomness")
}
vdfOutput := consensus.pendingRnds[0]
vdfBytes := [vdFAndProofSize]byte{}
seed := [32]byte{}
copy(vdfBytes[:], vdfOutput[:vdFAndProofSize])
copy(seed[:], vdfOutput[vdFAndProofSize:])
//pop the first vdfOutput from the list
consensus.pendingRnds = consensus.pendingRnds[1:]
return vdfBytes, seed, nil
}
var (
empty = []byte{}
)
// Signs the consensus message and returns the marshaled message.
func (consensus *Consensus) signAndMarshalConsensusMessage(message *msg_pb.Message,
priKey *bls_core.SecretKey) ([]byte, error) {
if err := consensus.signConsensusMessage(message, priKey); err != nil {
return empty, err
}
marshaledMessage, err := protobuf.Marshal(message)
if err != nil {
return empty, err
}
return marshaledMessage, nil
}
// GetViewID returns the consensus ID
func (consensus *Consensus) GetViewID() uint64 {
return consensus.viewID
}
// UpdatePublicKeys updates the PublicKeys for
// quorum on current subcommittee, protected by a mutex
func (consensus *Consensus) UpdatePublicKeys(pubKeys []bls_cosi.PublicKeyWrapper) int64 {
// TODO: use mutex for updating public keys pointer. No need to lock on all these logic.
consensus.pubKeyLock.Lock()
consensus.Decider.UpdateParticipants(pubKeys)
utils.Logger().Info().Msg("My Committee updated")
for i := range pubKeys {
utils.Logger().Debug().
Int("index", i).
Str("BLSPubKey", pubKeys[i].Bytes.Hex()).
Msg("Member")
}
allKeys := consensus.Decider.Participants()
if len(allKeys) != 0 {
consensus.LeaderPubKey = &allKeys[0]
utils.Logger().Info().
Str("info", consensus.LeaderPubKey.Bytes.Hex()).Msg("My Leader")
}
consensus.pubKeyLock.Unlock()
// reset states after update public keys
consensus.UpdateBitmaps()
consensus.ResetState()
consensus.vcLock.Lock()
consensus.ResetViewChangeState()
consensus.vcLock.Unlock()
return consensus.Decider.ParticipantsCount()
}
// NewFaker returns a faker consensus.
func NewFaker() *Consensus {
return &Consensus{}
}
// Sign on the hash of the message
func (consensus *Consensus) signMessage(message []byte, priKey *bls_core.SecretKey) []byte {
hash := hash.Keccak256(message)
signature := priKey.SignHash(hash[:])
return signature.Serialize()
}
// Sign on the consensus message signature field.
func (consensus *Consensus) signConsensusMessage(message *msg_pb.Message,
priKey *bls_core.SecretKey) error {
message.Signature = nil
marshaledMessage, err := protobuf.Marshal(message)
if err != nil {
return err
}
// 64 byte of signature on previous data
signature := consensus.signMessage(marshaledMessage, priKey)
message.Signature = signature
return nil
}
// GetViewIDSigsArray returns the signatures for viewID in viewchange
func (consensus *Consensus) GetViewIDSigsArray(viewID uint64) []*bls_core.Sign {
sigs := []*bls_core.Sign{}
for _, sig := range consensus.viewIDSigs[viewID] {
sigs = append(sigs, sig)
}
return sigs
}
// GetNilSigsArray returns the signatures for nil prepared message in viewchange
func (consensus *Consensus) GetNilSigsArray(viewID uint64) []*bls_core.Sign {
sigs := []*bls_core.Sign{}
for _, sig := range consensus.nilSigs[viewID] {
sigs = append(sigs, sig)
}
return sigs
}
// UpdateBitmaps update the bitmaps for prepare and commit phase
func (consensus *Consensus) UpdateBitmaps() {
consensus.getLogger().Debug().
Str("Phase", consensus.phase.String()).
Msg("[UpdateBitmaps] Updating consensus bitmaps")
members := consensus.Decider.Participants()
prepareBitmap, _ := bls_cosi.NewMask(members, nil)
commitBitmap, _ := bls_cosi.NewMask(members, nil)
consensus.prepareBitmap = prepareBitmap
consensus.commitBitmap = commitBitmap
}
// ResetState resets the state of the consensus
func (consensus *Consensus) ResetState() {
consensus.getLogger().Debug().
Str("Phase", consensus.phase.String()).
Msg("[ResetState] Resetting consensus state")
consensus.switchPhase(FBFTAnnounce, true)
consensus.blockHash = [32]byte{}
consensus.block = []byte{}
consensus.Decider.ResetPrepareAndCommitVotes()
if consensus.prepareBitmap != nil {
consensus.prepareBitmap.Clear()
}
if consensus.commitBitmap != nil {
consensus.commitBitmap.Clear()
}
consensus.aggregatedPrepareSig = nil
consensus.aggregatedCommitSig = nil
}
// ToggleConsensusCheck flip the flag of whether ignore viewID check during consensus process
func (consensus *Consensus) ToggleConsensusCheck() {
consensus.IgnoreViewIDCheck.Toggle()
}
// IsValidatorInCommittee returns whether the given validator BLS address is part of my committee
func (consensus *Consensus) IsValidatorInCommittee(pubKey bls.SerializedPublicKey) bool {
return consensus.Decider.IndexOf(pubKey) != -1
}
// SetViewID set the viewID to the height of the blockchain
func (consensus *Consensus) SetViewID(height uint64) {
consensus.viewID = height
consensus.current.viewID = height
}
// SetMode sets the mode of consensus
func (consensus *Consensus) SetMode(m Mode) {
consensus.current.SetMode(m)
}
// Mode returns the mode of consensus
func (consensus *Consensus) Mode() Mode {
return consensus.current.Mode()
}
// RegisterPRndChannel registers the channel for receiving randomness preimage from DRG protocol
func (consensus *Consensus) RegisterPRndChannel(pRndChannel chan []byte) {
consensus.PRndChannel = pRndChannel
}
// RegisterRndChannel registers the channel for receiving final randomness from DRG protocol
func (consensus *Consensus) RegisterRndChannel(rndChannel chan [548]byte) {
consensus.RndChannel = rndChannel
}
// Check viewID, caller's responsibility to hold lock when change ignoreViewIDCheck
func (consensus *Consensus) checkViewID(msg *FBFTMessage) error {
// just ignore consensus check for the first time when node join
if consensus.IgnoreViewIDCheck.IsSet() {
//in syncing mode, node accepts incoming messages without viewID/leaderKey checking
//so only set mode to normal when new node enters consensus and need checking viewID
consensus.current.SetMode(Normal)
consensus.viewID = msg.ViewID
consensus.current.SetViewID(msg.ViewID)
consensus.LeaderPubKey = msg.SenderPubkey
consensus.IgnoreViewIDCheck.UnSet()
consensus.consensusTimeout[timeoutConsensus].Start()
utils.Logger().Debug().
Uint64("viewID", consensus.viewID).
Str("leaderKey", consensus.LeaderPubKey.Bytes.Hex()).
Msg("viewID and leaderKey override")
utils.Logger().Debug().
Uint64("viewID", consensus.viewID).
Uint64("block", consensus.blockNum).
Msg("Start consensus timer")
return nil
} else if msg.ViewID > consensus.viewID {
return consensus_engine.ErrViewIDNotMatch
} else if msg.ViewID < consensus.viewID {
return errors.New("view ID belongs to the past")
}
return nil
}
// SetBlockNum sets the blockNum in consensus object, called at node bootstrap
func (consensus *Consensus) SetBlockNum(blockNum uint64) {
atomic.StoreUint64(&consensus.blockNum, blockNum)
}
// ReadSignatureBitmapPayload read the payload for signature and bitmap; offset is the beginning position of reading
func (consensus *Consensus) ReadSignatureBitmapPayload(
recvPayload []byte, offset int,
) (*bls_core.Sign, *bls_cosi.Mask, error) {
if offset+bls.BLSSignatureSizeInBytes > len(recvPayload) {
return nil, nil, errors.New("payload not have enough length")
}
sigAndBitmapPayload := recvPayload[offset:]
// TODO(audit): keep a Mask in the Decider so it won't be reconstructed on the fly.
members := consensus.Decider.Participants()
return chain.ReadSignatureBitmapByPublicKeys(
sigAndBitmapPayload, members,
)
}
// getLogger returns logger for consensus contexts added
func (consensus *Consensus) getLogger() *zerolog.Logger {
logger := utils.Logger().With().
Uint64("myBlock", consensus.blockNum).
Uint64("myViewID", consensus.viewID).
Interface("phase", consensus.phase).
Str("mode", consensus.current.Mode().String()).
Logger()
return &logger
}
// retrieve corresponding blsPublicKey from Coinbase Address
func (consensus *Consensus) getLeaderPubKeyFromCoinbase(
header *block.Header,
) (*bls.PublicKeyWrapper, error) {
shardState, err := consensus.ChainReader.ReadShardState(header.Epoch())
if err != nil {
return nil, errors.Wrapf(err, "cannot read shard state %v %s",
header.Epoch(),
header.Coinbase().Hash().Hex(),
)
}
committee, err := shardState.FindCommitteeByID(header.ShardID())
if err != nil {
return nil, err
}
committerKey := new(bls_core.PublicKey)
isStaking := consensus.ChainReader.Config().IsStaking(header.Epoch())
for _, member := range committee.Slots {
if isStaking {
// After staking the coinbase address will be the address of bls public key
if utils.GetAddressFromBLSPubKeyBytes(member.BLSPublicKey[:]) == header.Coinbase() {
if committerKey, err = bls.BytesToBLSPublicKey(member.BLSPublicKey[:]); err != nil {
return nil, err
}
return &bls.PublicKeyWrapper{Object: committerKey, Bytes: member.BLSPublicKey}, nil
}
} else {
if member.EcdsaAddress == header.Coinbase() {
if committerKey, err = bls.BytesToBLSPublicKey(member.BLSPublicKey[:]); err != nil {
return nil, err
}
return &bls.PublicKeyWrapper{Object: committerKey, Bytes: member.BLSPublicKey}, nil
}
}
}
return nil, errors.Errorf(
"cannot find corresponding BLS Public Key coinbase %s",
header.Coinbase().Hex(),
)
}
// UpdateConsensusInformation will update shard information (epoch, publicKeys, blockNum, viewID)
// based on the local blockchain. It is called in two cases for now:
// 1. consensus object initialization. because of current dependency where chainreader is only available
// after node is initialized; node is only available after consensus is initialized
// we need call this function separately after create consensus object
// 2. after state syncing is finished
// It will return the mode:
// (a) node not in committed: Listening mode
// (b) node in committed but has any err during processing: Syncing mode
// (c) node in committed and everything looks good: Normal mode
func (consensus *Consensus) UpdateConsensusInformation() Mode {
curHeader := consensus.ChainReader.CurrentHeader()
curEpoch := curHeader.Epoch()
nextEpoch := new(big.Int).Add(curHeader.Epoch(), common.Big1)
// Overwrite nextEpoch if the shard state has a epoch number
if len(curHeader.ShardState()) > 0 {
nextShardState, err := curHeader.GetShardState()
if err != nil {
return Syncing
}
if nextShardState.Epoch != nil {
nextEpoch = nextShardState.Epoch
}
}
if consensus.ChainReader.Config().IsFiveSeconds(nextEpoch) {
consensus.BlockPeriod = time.Duration(5 * time.Second)
}
isFirstTimeStaking := consensus.ChainReader.Config().IsStaking(nextEpoch) &&
len(curHeader.ShardState()) > 0 &&
!consensus.ChainReader.Config().IsStaking(curEpoch)
haventUpdatedDecider := consensus.ChainReader.Config().IsStaking(curEpoch) &&
consensus.Decider.Policy() != quorum.SuperMajorityStake
// Only happens once, the flip-over to a new Decider policy
if isFirstTimeStaking || haventUpdatedDecider {
decider := quorum.NewDecider(quorum.SuperMajorityStake, consensus.ShardID)
decider.SetMyPublicKeyProvider(func() (multibls.PublicKeys, error) {
return consensus.GetPublicKeys(), nil
})
consensus.Decider = decider
}
var committeeToSet *shard.Committee
epochToSet := curEpoch
hasError := false
curShardState, err := committee.WithStakingEnabled.ReadFromDB(
curEpoch, consensus.ChainReader,
)
if err != nil {
utils.Logger().Error().
Err(err).
Uint32("shard", consensus.ShardID).
Msg("[UpdateConsensusInformation] Error retrieving current shard state")
return Syncing
}
consensus.getLogger().Info().Msg("[UpdateConsensusInformation] Updating.....")
// genesis block is a special case that will have shard state and needs to skip processing
isNotGenesisBlock := curHeader.Number().Cmp(big.NewInt(0)) > 0
if len(curHeader.ShardState()) > 0 && isNotGenesisBlock {
nextShardState, err := committee.WithStakingEnabled.ReadFromDB(
nextEpoch, consensus.ChainReader,
)
if err != nil {
utils.Logger().Error().
Err(err).
Uint32("shard", consensus.ShardID).
Msg("Error retrieving nextEpoch shard state")
return Syncing
}
subComm, err := nextShardState.FindCommitteeByID(curHeader.ShardID())
if err != nil {
utils.Logger().Error().
Err(err).
Uint32("shard", consensus.ShardID).
Msg("Error retrieving nextEpoch shard state")
return Syncing
}
committeeToSet = subComm
epochToSet = nextEpoch
} else {
subComm, err := curShardState.FindCommitteeByID(curHeader.ShardID())
if err != nil {
utils.Logger().Error().
Err(err).
Uint32("shard", consensus.ShardID).
Msg("Error retrieving current shard state")
return Syncing
}
committeeToSet = subComm
}
if len(committeeToSet.Slots) == 0 {
consensus.getLogger().Warn().
Msg("[UpdateConsensusInformation] No members in the committee to update")
hasError = true
}
// update public keys in the committee
oldLeader := consensus.LeaderPubKey
pubKeys, _ := committeeToSet.BLSPublicKeys()
consensus.getLogger().Info().
Int("numPubKeys", len(pubKeys)).
Msg("[UpdateConsensusInformation] Successfully updated public keys")
consensus.UpdatePublicKeys(pubKeys)
// Update voters in the committee
if _, err := consensus.Decider.SetVoters(
committeeToSet, epochToSet,
); err != nil {
utils.Logger().Error().
Err(err).
Uint32("shard", consensus.ShardID).
Msg("Error when updating voters")
return Syncing
}
utils.Logger().Info().
Uint64("block-number", curHeader.Number().Uint64()).
Uint64("curEpoch", curHeader.Epoch().Uint64()).
Uint32("shard-id", consensus.ShardID).
Msg("[UpdateConsensusInformation] changing committee")
// take care of possible leader change during the epoch
if len(curHeader.ShardState()) == 0 && curHeader.Number().Uint64() != 0 {
leaderPubKey, err := consensus.getLeaderPubKeyFromCoinbase(curHeader)
if err != nil || leaderPubKey == nil {
consensus.getLogger().Debug().Err(err).
Msg("[UpdateConsensusInformation] Unable to get leaderPubKey from coinbase")
consensus.IgnoreViewIDCheck.Set()
hasError = true
} else {
consensus.getLogger().Debug().
Str("leaderPubKey", leaderPubKey.Bytes.Hex()).
Msg("[UpdateConsensusInformation] Most Recent LeaderPubKey Updated Based on BlockChain")
consensus.LeaderPubKey = leaderPubKey
}
}
for _, key := range pubKeys {
// in committee
myPubKeys := consensus.GetPublicKeys()
if myPubKeys.Contains(key.Object) {
if hasError {
return Syncing
}
// If the leader changed and I myself become the leader
if (oldLeader != nil && consensus.LeaderPubKey != nil &&
!consensus.LeaderPubKey.Object.IsEqual(oldLeader.Object)) && consensus.IsLeader() {
go func() {
utils.Logger().Debug().
Str("myKey", myPubKeys.SerializeToHexStr()).
Uint64("viewID", consensus.viewID).
Uint64("block", consensus.blockNum).
Msg("[UpdateConsensusInformation] I am the New Leader")
consensus.ReadySignal <- struct{}{}
}()
}
return Normal
}
}
// not in committee
return Listening
}
// IsLeader check if the node is a leader or not by comparing the public key of
// the node with the leader public key
func (consensus *Consensus) IsLeader() bool {
for _, key := range consensus.priKey {
if key.Pub.Object.IsEqual(consensus.LeaderPubKey.Object) {
return true
}
}
return false
}
// NeedsRandomNumberGeneration returns true if the current epoch needs random number generation
func (consensus *Consensus) NeedsRandomNumberGeneration(epoch *big.Int) bool {
if consensus.ShardID == 0 && epoch.Uint64() >= shard.Schedule.RandomnessStartingEpoch() {
return true
}
return false
}
func (consensus *Consensus) addViewIDKeyIfNotExist(viewID uint64) {
members := consensus.Decider.Participants()
if _, ok := consensus.bhpSigs[viewID]; !ok {
consensus.bhpSigs[viewID] = map[string]*bls_core.Sign{}
}
if _, ok := consensus.nilSigs[viewID]; !ok {
consensus.nilSigs[viewID] = map[string]*bls_core.Sign{}
}
if _, ok := consensus.viewIDSigs[viewID]; !ok {
consensus.viewIDSigs[viewID] = map[string]*bls_core.Sign{}
}
if _, ok := consensus.bhpBitmap[viewID]; !ok {
bhpBitmap, _ := bls_cosi.NewMask(members, nil)
consensus.bhpBitmap[viewID] = bhpBitmap
}
if _, ok := consensus.nilBitmap[viewID]; !ok {
nilBitmap, _ := bls_cosi.NewMask(members, nil)
consensus.nilBitmap[viewID] = nilBitmap
}
if _, ok := consensus.viewIDBitmap[viewID]; !ok {
viewIDBitmap, _ := bls_cosi.NewMask(members, nil)
consensus.viewIDBitmap[viewID] = viewIDBitmap
}
}