The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/api/service/syncing/syncing.go

790 lines
25 KiB

package syncing
import (
"bytes"
"encoding/hex"
"fmt"
"reflect"
"sort"
"strconv"
"sync"
"time"
"github.com/Workiva/go-datastructures/queue"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/api/service/syncing/downloader"
pb "github.com/harmony-one/harmony/api/service/syncing/downloader/proto"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/p2p"
)
// Constants for syncing.
const (
downloadBlocksRetryLimit = 5 // downloadBlocks service retry limit
TimesToFail = 5 // downloadBlocks service retry limit
RegistrationNumber = 3
SyncingPortDifference = 3000
inSyncThreshold = 0 // when peerBlockHeight - myBlockHeight <= inSyncThreshold, it's ready to join consensus
SyncLoopBatchSize uint32 = 1000 // maximum size for one query of block hashes
verifyHeaderBatchSize uint64 = 100 // block chain header verification batch size
SyncLoopFrequency = 1 // unit in second
LastMileBlocksSize = 50
)
// SyncPeerConfig is peer config to sync.
type SyncPeerConfig struct {
ip string
port string
peerHash []byte
client *downloader.Client
blockHashes [][]byte // block hashes before node doing sync
newBlocks []*types.Block // blocks after node doing sync
mux sync.Mutex
}
// GetClient returns client pointer of downloader.Client
func (peerConfig *SyncPeerConfig) GetClient() *downloader.Client {
return peerConfig.client
}
// SyncBlockTask is the task struct to sync a specific block.
type SyncBlockTask struct {
index int
blockHash []byte
}
// SyncConfig contains an array of SyncPeerConfig.
type SyncConfig struct {
// mtx locks peers, and *SyncPeerConfig pointers in peers.
// SyncPeerConfig itself is guarded by its own mutex.
mtx sync.RWMutex
peers []*SyncPeerConfig
}
// AddPeer adds the given sync peer.
func (sc *SyncConfig) AddPeer(peer *SyncPeerConfig) {
sc.mtx.Lock()
defer sc.mtx.Unlock()
sc.peers = append(sc.peers, peer)
}
// ForEachPeer calls the given function with each peer.
// It breaks the iteration iff the function returns true.
func (sc *SyncConfig) ForEachPeer(f func(peer *SyncPeerConfig) (brk bool)) {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for _, peer := range sc.peers {
if f(peer) {
break
}
}
}
// CreateStateSync returns the implementation of StateSyncInterface interface.
func CreateStateSync(ip string, port string, peerHash [20]byte) *StateSync {
stateSync := &StateSync{}
stateSync.selfip = ip
stateSync.selfport = port
stateSync.selfPeerHash = peerHash
stateSync.commonBlocks = make(map[int]*types.Block)
stateSync.lastMileBlocks = []*types.Block{}
return stateSync
}
// StateSync is the struct that implements StateSyncInterface.
type StateSync struct {
selfip string
selfport string
selfPeerHash [20]byte // hash of ip and address combination
commonBlocks map[int]*types.Block
lastMileBlocks []*types.Block // last mile blocks to catch up with the consensus
syncConfig *SyncConfig
stateSyncTaskQueue *queue.Queue
syncMux sync.Mutex
lastMileMux sync.Mutex
}
func (ss *StateSync) purgeAllBlocksFromCache() {
ss.syncMux.Lock()
defer ss.syncMux.Unlock()
ss.commonBlocks = make(map[int]*types.Block)
ss.lastMileBlocks = nil
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
configPeer.blockHashes = nil
configPeer.newBlocks = nil
return
})
}
func (ss *StateSync) purgeOldBlocksFromCache() {
ss.syncMux.Lock()
defer ss.syncMux.Unlock()
ss.commonBlocks = make(map[int]*types.Block)
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
configPeer.blockHashes = nil
return
})
}
// AddLastMileBlock add the lastest a few block into queue for syncing
// only keep the latest blocks with size capped by LastMileBlocksSize
func (ss *StateSync) AddLastMileBlock(block *types.Block) {
ss.lastMileMux.Lock()
defer ss.lastMileMux.Unlock()
if ss.lastMileBlocks != nil {
if len(ss.lastMileBlocks) >= LastMileBlocksSize {
ss.lastMileBlocks = ss.lastMileBlocks[1:]
}
ss.lastMileBlocks = append(ss.lastMileBlocks, block)
}
}
// CloseConnections close grpc connections for state sync clients
func (sc *SyncConfig) CloseConnections() {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for _, pc := range sc.peers {
pc.client.Close()
}
}
// FindPeerByHash returns the peer with the given hash, or nil if not found.
func (sc *SyncConfig) FindPeerByHash(peerHash []byte) *SyncPeerConfig {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for _, pc := range sc.peers {
if bytes.Compare(pc.peerHash, peerHash) == 0 {
return pc
}
}
return nil
}
// AddNewBlock will add newly received block into state syncing queue
func (ss *StateSync) AddNewBlock(peerHash []byte, block *types.Block) {
pc := ss.syncConfig.FindPeerByHash(peerHash)
if pc == nil {
// Received a block with no active peer; just ignore.
return
}
// TODO ek – we shouldn't mess with SyncPeerConfig's mutex.
// Factor this into a method, like pc.AddNewBlock(block)
pc.mux.Lock()
defer pc.mux.Unlock()
pc.newBlocks = append(pc.newBlocks, block)
utils.Logger().Debug().
Int("total", len(pc.newBlocks)).
Uint64("blockHeight", block.NumberU64()).
Msg("[SYNC] new block received")
}
// CreateTestSyncPeerConfig used for testing.
func CreateTestSyncPeerConfig(client *downloader.Client, blockHashes [][]byte) *SyncPeerConfig {
return &SyncPeerConfig{
client: client,
blockHashes: blockHashes,
}
}
// CompareSyncPeerConfigByblockHashes compares two SyncPeerConfig by blockHashes.
func CompareSyncPeerConfigByblockHashes(a *SyncPeerConfig, b *SyncPeerConfig) int {
if len(a.blockHashes) != len(b.blockHashes) {
if len(a.blockHashes) < len(b.blockHashes) {
return -1
}
return 1
}
for id := range a.blockHashes {
if !reflect.DeepEqual(a.blockHashes[id], b.blockHashes[id]) {
return bytes.Compare(a.blockHashes[id], b.blockHashes[id])
}
}
return 0
}
// GetBlocks gets blocks by calling grpc request to the corresponding peer.
func (peerConfig *SyncPeerConfig) GetBlocks(hashes [][]byte) ([][]byte, error) {
response := peerConfig.client.GetBlocks(hashes)
if response == nil {
return nil, ErrGetBlock
}
return response.Payload, nil
}
// CreateSyncConfig creates SyncConfig for StateSync object.
func (ss *StateSync) CreateSyncConfig(peers []p2p.Peer, isBeacon bool) error {
utils.Logger().Debug().
Int("len", len(peers)).
Bool("isBeacon", isBeacon).
Msg("[SYNC] CreateSyncConfig: len of peers")
if len(peers) == 0 {
return ctxerror.New("[SYNC] no peers to connect to")
}
if ss.syncConfig != nil {
ss.syncConfig.CloseConnections()
}
ss.syncConfig = &SyncConfig{}
var wg sync.WaitGroup
for _, peer := range peers {
wg.Add(1)
go func(peer p2p.Peer) {
defer wg.Done()
client := downloader.ClientSetup(peer.IP, peer.Port)
if client == nil {
return
}
peerConfig := &SyncPeerConfig{
ip: peer.IP,
port: peer.Port,
client: client,
}
ss.syncConfig.AddPeer(peerConfig)
}(peer)
}
wg.Wait()
utils.Logger().Info().
Int("len", len(ss.syncConfig.peers)).
Bool("isBeacon", isBeacon).
Msg("[SYNC] Finished making connection to peers")
return nil
}
// GetActivePeerNumber returns the number of active peers
func (ss *StateSync) GetActivePeerNumber() int {
if ss.syncConfig == nil {
return 0
}
// len() is atomic; no need to hold mutex.
return len(ss.syncConfig.peers)
}
// getHowManyMaxConsensus returns max number of consensus nodes and the first ID of consensus group.
// Assumption: all peers are sorted by CompareSyncPeerConfigByBlockHashes first.
// Caller shall ensure mtx is locked for reading.
func (sc *SyncConfig) getHowManyMaxConsensus() (int, int) {
// As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively.
curCount := 0
curFirstID := -1
maxCount := 0
maxFirstID := -1
for i := range sc.peers {
if curFirstID == -1 || CompareSyncPeerConfigByblockHashes(sc.peers[curFirstID], sc.peers[i]) != 0 {
curCount = 1
curFirstID = i
} else {
curCount++
}
if curCount > maxCount {
maxCount = curCount
maxFirstID = curFirstID
}
}
return maxFirstID, maxCount
}
// InitForTesting used for testing.
func (sc *SyncConfig) InitForTesting(client *downloader.Client, blockHashes [][]byte) {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for i := range sc.peers {
sc.peers[i].blockHashes = blockHashes
sc.peers[i].client = client
}
}
// cleanUpPeers cleans up all peers whose blockHashes are not equal to
// consensus block hashes. Caller shall ensure mtx is locked for RW.
func (sc *SyncConfig) cleanUpPeers(maxFirstID int) {
fixedPeer := sc.peers[maxFirstID]
for i := 0; i < len(sc.peers); i++ {
if CompareSyncPeerConfigByblockHashes(fixedPeer, sc.peers[i]) != 0 {
// TODO: move it into a util delete func.
// See tip https://github.com/golang/go/wiki/SliceTricks
// Close the client and remove the peer out of the
sc.peers[i].client.Close()
copy(sc.peers[i:], sc.peers[i+1:])
sc.peers[len(sc.peers)-1] = nil
sc.peers = sc.peers[:len(sc.peers)-1]
}
}
}
// GetBlockHashesConsensusAndCleanUp selects the most common peer config based on their block hashes to download/sync.
// Note that choosing the most common peer config does not guarantee that the blocks to be downloaded are the correct ones.
// The subsequent node syncing steps of verifying the block header chain will give such confirmation later.
// If later block header verification fails with the sync peer config chosen here, the entire sync loop gets retried with a new peer set.
func (sc *SyncConfig) GetBlockHashesConsensusAndCleanUp() {
sc.mtx.Lock()
defer sc.mtx.Unlock()
// Sort all peers by the blockHashes.
sort.Slice(sc.peers, func(i, j int) bool {
return CompareSyncPeerConfigByblockHashes(sc.peers[i], sc.peers[j]) == -1
})
maxFirstID, maxCount := sc.getHowManyMaxConsensus()
utils.Logger().Info().
Int("maxFirstID", maxFirstID).
Int("maxCount", maxCount).
Msg("[SYNC] block consensus hashes")
sc.cleanUpPeers(maxFirstID)
}
// getConsensusHashes gets all hashes needed to download.
func (ss *StateSync) getConsensusHashes(startHash []byte, size uint32) {
var wg sync.WaitGroup
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
wg.Add(1)
go func() {
defer wg.Done()
response := peerConfig.client.GetBlockHashes(startHash, size, ss.selfip, ss.selfport)
if response == nil {
utils.Logger().Warn().
Str("peerIP", peerConfig.ip).
Str("peerPort", peerConfig.port).
Msg("[SYNC] getConsensusHashes Nil Response")
return
}
if len(response.Payload) > int(size+1) {
utils.Logger().Warn().
Uint32("requestSize", size).
Int("respondSize", len(response.Payload)).
Msg("[SYNC] getConsensusHashes: receive more blockHahses than request!")
peerConfig.blockHashes = response.Payload[:size+1]
} else {
peerConfig.blockHashes = response.Payload
}
}()
return
})
wg.Wait()
ss.syncConfig.GetBlockHashesConsensusAndCleanUp()
utils.Logger().Info().Msg("[SYNC] Finished getting consensus block hashes")
}
func (ss *StateSync) generateStateSyncTaskQueue(bc *core.BlockChain) {
ss.stateSyncTaskQueue = queue.New(0)
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
for id, blockHash := range configPeer.blockHashes {
if err := ss.stateSyncTaskQueue.Put(SyncBlockTask{index: id, blockHash: blockHash}); err != nil {
utils.Logger().Warn().
Err(err).
Int("taskIndex", id).
Str("taskBlock", hex.EncodeToString(blockHash)).
Msg("[SYNC] generateStateSyncTaskQueue: cannot add task")
}
}
brk = true
return
})
utils.Logger().Info().Int64("length", ss.stateSyncTaskQueue.Len()).Msg("[SYNC] generateStateSyncTaskQueue: finished")
}
// downloadBlocks downloads blocks from state sync task queue.
func (ss *StateSync) downloadBlocks(bc *core.BlockChain) {
// Initialize blockchain
var wg sync.WaitGroup
count := 0
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
wg.Add(1)
go func(stateSyncTaskQueue *queue.Queue, bc *core.BlockChain) {
defer wg.Done()
for !stateSyncTaskQueue.Empty() {
task, err := ss.stateSyncTaskQueue.Poll(1, time.Millisecond)
if err == queue.ErrTimeout || len(task) == 0 {
utils.Logger().Error().Err(err).Msg("[SYNC] downloadBlocks: ss.stateSyncTaskQueue poll timeout")
break
}
syncTask := task[0].(SyncBlockTask)
//id := syncTask.index
payload, err := peerConfig.GetBlocks([][]byte{syncTask.blockHash})
if err != nil || len(payload) == 0 {
count++
utils.Logger().Error().Err(err).Int("failNumber", count).Msg("[SYNC] downloadBlocks: GetBlocks failed")
if count > downloadBlocksRetryLimit {
break
}
if err := ss.stateSyncTaskQueue.Put(syncTask); err != nil {
utils.Logger().Warn().
Err(err).
Int("taskIndex", syncTask.index).
Str("taskBlock", hex.EncodeToString(syncTask.blockHash)).
Msg("downloadBlocks: cannot add task")
}
continue
}
var blockObj types.Block
// currently only send one block a time
err = rlp.DecodeBytes(payload[0], &blockObj)
if err != nil {
count++
utils.Logger().Error().Err(err).Msg("[SYNC] downloadBlocks: failed to DecodeBytes from received new block")
if count > downloadBlocksRetryLimit {
break
}
if err := ss.stateSyncTaskQueue.Put(syncTask); err != nil {
utils.Logger().Warn().
Err(err).
Int("taskIndex", syncTask.index).
Str("taskBlock", hex.EncodeToString(syncTask.blockHash)).
Msg("cannot add task")
}
continue
}
ss.syncMux.Lock()
ss.commonBlocks[syncTask.index] = &blockObj
ss.syncMux.Unlock()
}
}(ss.stateSyncTaskQueue, bc)
return
})
wg.Wait()
utils.Logger().Info().Msg("[SYNC] downloadBlocks: finished")
}
// CompareBlockByHash compares two block by hash, it will be used in sort the blocks
func CompareBlockByHash(a *types.Block, b *types.Block) int {
ha := a.Hash()
hb := b.Hash()
return bytes.Compare(ha[:], hb[:])
}
// GetHowManyMaxConsensus will get the most common blocks and the first such blockID
func GetHowManyMaxConsensus(blocks []*types.Block) (int, int) {
// As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively.
curCount := 0
curFirstID := -1
maxCount := 0
maxFirstID := -1
for i := range blocks {
if curFirstID == -1 || CompareBlockByHash(blocks[curFirstID], blocks[i]) != 0 {
curCount = 1
curFirstID = i
} else {
curCount++
}
if curCount > maxCount {
maxCount = curCount
maxFirstID = curFirstID
}
}
return maxFirstID, maxCount
}
func (ss *StateSync) getMaxConsensusBlockFromParentHash(parentHash common.Hash) *types.Block {
candidateBlocks := []*types.Block{}
ss.syncMux.Lock()
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
for _, block := range peerConfig.newBlocks {
ph := block.ParentHash()
if bytes.Compare(ph[:], parentHash[:]) == 0 {
candidateBlocks = append(candidateBlocks, block)
break
}
}
return
})
ss.syncMux.Unlock()
if len(candidateBlocks) == 0 {
return nil
}
// Sort by blockHashes.
sort.Slice(candidateBlocks, func(i, j int) bool {
return CompareBlockByHash(candidateBlocks[i], candidateBlocks[j]) == -1
})
maxFirstID, maxCount := GetHowManyMaxConsensus(candidateBlocks)
hash := candidateBlocks[maxFirstID].Hash()
utils.Logger().Debug().
Hex("parentHash", parentHash[:]).
Hex("hash", hash[:]).
Int("maxCount", maxCount).
Msg("[SYNC] Find block with matching parenthash")
return candidateBlocks[maxFirstID]
}
func (ss *StateSync) getBlockFromOldBlocksByParentHash(parentHash common.Hash) *types.Block {
for _, block := range ss.commonBlocks {
ph := block.ParentHash()
if bytes.Compare(ph[:], parentHash[:]) == 0 {
return block
}
}
return nil
}
func (ss *StateSync) getBlockFromLastMileBlocksByParentHash(parentHash common.Hash) *types.Block {
for _, block := range ss.lastMileBlocks {
ph := block.ParentHash()
if bytes.Compare(ph[:], parentHash[:]) == 0 {
return block
}
}
return nil
}
// UpdateBlockAndStatus ...
func (ss *StateSync) UpdateBlockAndStatus(block *types.Block, bc *core.BlockChain, worker *worker.Worker) error {
utils.Logger().Info().Str("blockHex", bc.CurrentBlock().Hash().Hex()).Msg("[SYNC] UpdateBlockAndStatus: Current Block")
// Verify block signatures
if block.NumberU64() > 1 {
// Verify signature every 100 blocks
verifySig := block.NumberU64()%verifyHeaderBatchSize == 0
err := bc.Engine().VerifyHeader(bc, block.Header(), verifySig)
if err != nil {
utils.Logger().Error().Err(err).Msgf("[SYNC] UpdateBlockAndStatus: failed verifying signatures for new block %d", block.NumberU64())
utils.Logger().Debug().Interface("block", bc.CurrentBlock()).Msg("[SYNC] UpdateBlockAndStatus: Rolling back last 99 blocks!")
var hashes []common.Hash
for i := uint64(0); i < verifyHeaderBatchSize-1; i++ {
hashes = append(hashes, bc.CurrentBlock().Hash())
}
bc.Rollback(hashes)
return err
}
}
_, err := bc.InsertChain([]*types.Block{block}, false /* verifyHeaders */)
if err != nil {
utils.Logger().Error().Err(err).Msgf("[SYNC] UpdateBlockAndStatus: Error adding new block to blockchain %d %d", block.NumberU64(), block.ShardID())
utils.Logger().Debug().Interface("block", bc.CurrentBlock()).Msg("[SYNC] UpdateBlockAndStatus: Rolling back current block!")
bc.Rollback([]common.Hash{bc.CurrentBlock().Hash()})
return err
}
utils.Logger().Info().
Uint64("blockHeight", bc.CurrentBlock().NumberU64()).
Str("blockHex", bc.CurrentBlock().Hash().Hex()).
Msg("[SYNC] UpdateBlockAndStatus: new block added to blockchain")
return nil
}
// generateNewState will construct most recent state from downloaded blocks
func (ss *StateSync) generateNewState(bc *core.BlockChain, worker *worker.Worker) error {
// update blocks created before node start sync
parentHash := bc.CurrentBlock().Hash()
var err error
for {
block := ss.getBlockFromOldBlocksByParentHash(parentHash)
if block == nil {
break
}
err = ss.UpdateBlockAndStatus(block, bc, worker)
if err != nil {
break
}
parentHash = block.Hash()
}
ss.syncMux.Lock()
ss.commonBlocks = make(map[int]*types.Block)
ss.syncMux.Unlock()
// update blocks after node start sync
parentHash = bc.CurrentBlock().Hash()
for {
block := ss.getMaxConsensusBlockFromParentHash(parentHash)
if block == nil {
break
}
err = ss.UpdateBlockAndStatus(block, bc, worker)
if err != nil {
break
}
parentHash = block.Hash()
}
// TODO ek – Do we need to hold syncMux now that syncConfig has its own mutex?
ss.syncMux.Lock()
ss.syncConfig.ForEachPeer(func(peer *SyncPeerConfig) (brk bool) {
peer.newBlocks = []*types.Block{}
return
})
ss.syncMux.Unlock()
// update last mile blocks if any
parentHash = bc.CurrentBlock().Hash()
for {
block := ss.getBlockFromLastMileBlocksByParentHash(parentHash)
if block == nil {
break
}
err = ss.UpdateBlockAndStatus(block, bc, worker)
if err != nil {
break
}
parentHash = block.Hash()
}
return err
}
// ProcessStateSync processes state sync from the blocks received but not yet processed so far
func (ss *StateSync) ProcessStateSync(startHash []byte, size uint32, bc *core.BlockChain, worker *worker.Worker) error {
// Gets consensus hashes.
ss.getConsensusHashes(startHash, size)
ss.generateStateSyncTaskQueue(bc)
// Download blocks.
if ss.stateSyncTaskQueue.Len() > 0 {
ss.downloadBlocks(bc)
}
return ss.generateNewState(bc, worker)
}
func (peerConfig *SyncPeerConfig) registerToBroadcast(peerHash []byte, ip, port string) error {
response := peerConfig.client.Register(peerHash, ip, port)
if response == nil || response.Type == pb.DownloaderResponse_FAIL {
return ErrRegistrationFail
} else if response.Type == pb.DownloaderResponse_SUCCESS {
return nil
}
return ErrRegistrationFail
}
// RegisterNodeInfo will register node to peers to accept future new block broadcasting
// return number of successful registration
func (ss *StateSync) RegisterNodeInfo() int {
registrationNumber := RegistrationNumber
utils.Logger().Debug().
Int("registrationNumber", registrationNumber).
Int("activePeerNumber", len(ss.syncConfig.peers)).
Msg("[SYNC] node registration to peers")
count := 0
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
logger := utils.Logger().With().Str("peerPort", peerConfig.port).Str("peerIP", peerConfig.ip).Logger()
if count >= registrationNumber {
brk = true
return
}
if peerConfig.ip == ss.selfip && peerConfig.port == GetSyncingPort(ss.selfport) {
logger.Debug().
Str("selfport", ss.selfport).
Str("selfsyncport", GetSyncingPort(ss.selfport)).
Msg("[SYNC] skip self")
return
}
err := peerConfig.registerToBroadcast(ss.selfPeerHash[:], ss.selfip, ss.selfport)
if err != nil {
logger.Debug().
Hex("selfPeerHash", ss.selfPeerHash[:]).
Msg("[SYNC] register failed to peer")
return
}
logger.Debug().Msg("[SYNC] register success")
count++
return
})
return count
}
// getMaxPeerHeight gets the maximum blockchain heights from peers
func (ss *StateSync) getMaxPeerHeight(isBeacon bool) uint64 {
maxHeight := uint64(0)
var wg sync.WaitGroup
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
wg.Add(1)
go func() {
defer wg.Done()
//debug
// utils.Logger().Debug().Bool("isBeacon", isBeacon).Str("peerIP", peerConfig.ip).Str("peerPort", peerConfig.port).Msg("[Sync]getMaxPeerHeight")
response, err := peerConfig.client.GetBlockChainHeight()
if err != nil {
utils.Logger().Warn().Err(err).Str("peerIP", peerConfig.ip).Str("peerPort", peerConfig.port).Msg("[Sync]GetBlockChainHeight failed")
return
}
ss.syncMux.Lock()
if response != nil && maxHeight < response.BlockHeight {
maxHeight = response.BlockHeight
}
ss.syncMux.Unlock()
}()
return
})
wg.Wait()
return maxHeight
}
// IsSameBlockchainHeight checks whether the node is out of sync from other peers
func (ss *StateSync) IsSameBlockchainHeight(bc *core.BlockChain) (uint64, bool) {
otherHeight := ss.getMaxPeerHeight(false)
currentHeight := bc.CurrentBlock().NumberU64()
return otherHeight, currentHeight == otherHeight
}
// IsOutOfSync checks whether the node is out of sync from other peers
func (ss *StateSync) IsOutOfSync(bc *core.BlockChain) bool {
otherHeight := ss.getMaxPeerHeight(false)
currentHeight := bc.CurrentBlock().NumberU64()
utils.Logger().Debug().
Uint64("OtherHeight", otherHeight).
Uint64("MyHeight", currentHeight).
Bool("IsOutOfSync", currentHeight+inSyncThreshold < otherHeight).
Msg("[SYNC] Checking sync status")
return currentHeight+inSyncThreshold < otherHeight
}
// SyncLoop will keep syncing with peers until catches up
func (ss *StateSync) SyncLoop(bc *core.BlockChain, worker *worker.Worker, isBeacon bool, consensus *consensus.Consensus) {
if !isBeacon {
ss.RegisterNodeInfo()
}
// remove SyncLoopFrequency
ticker := time.NewTicker(SyncLoopFrequency * time.Second)
defer ticker.Stop()
Loop:
for {
select {
case <-ticker.C:
otherHeight := ss.getMaxPeerHeight(isBeacon)
currentHeight := bc.CurrentBlock().NumberU64()
if currentHeight >= otherHeight {
utils.Logger().Info().
Msgf("[SYNC] Node is now IN SYNC! (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
break Loop
} else {
utils.Logger().Debug().
Msgf("[SYNC] Node is Not in Sync (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
}
startHash := bc.CurrentBlock().Hash()
size := uint32(otherHeight - currentHeight)
if size > SyncLoopBatchSize {
size = SyncLoopBatchSize
}
err := ss.ProcessStateSync(startHash[:], size, bc, worker)
if err != nil {
utils.Logger().Error().Err(err).
Msgf("[SYNC] ProcessStateSync failed (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
// should we still call UpdateConsensusInformation() upon state sync failure?
// how to handle error here?
}
ss.purgeOldBlocksFromCache()
if consensus != nil {
consensus.UpdateConsensusInformation()
}
}
}
ss.purgeAllBlocksFromCache()
}
// GetSyncingPort returns the syncing port.
func GetSyncingPort(nodePort string) string {
if port, err := strconv.Atoi(nodePort); err == nil {
return fmt.Sprintf("%d", port-SyncingPortDifference)
}
return ""
}