The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/blockchain.go

2916 lines
99 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package core implements the Ethereum consensus protocol.
package core
import (
"bytes"
"errors"
"fmt"
"io"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
bls2 "github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
"github.com/harmony-one/harmony/crypto/bls"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/numeric"
"github.com/harmony-one/harmony/shard"
staking "github.com/harmony-one/harmony/staking/types"
lru "github.com/hashicorp/golang-lru"
)
var (
// blockInsertTimer
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
// ErrNoGenesis is the error when there is no genesis.
ErrNoGenesis = errors.New("Genesis not found in chain")
)
const (
bodyCacheLimit = 256
blockCacheLimit = 256
receiptsCacheLimit = 32
maxFutureBlocks = 256
maxTimeFutureBlocks = 30
badBlockLimit = 10
triesInMemory = 128
shardCacheLimit = 2
commitsCacheLimit = 10
epochCacheLimit = 10
randomnessCacheLimit = 10
validatorCacheLimit = 1024
validatorStatsCacheLimit = 1024
validatorListCacheLimit = 10
validatorListByDelegatorCacheLimit = 1024
pendingCrossLinksCacheLimit = 2
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
BlockChainVersion = 3
)
// CacheConfig contains the configuration values for the trie caching/pruning
// that's resident in a blockchain.
type CacheConfig struct {
Disabled bool // Whether to disable trie write caching (archive node)
TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
}
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
chainConfig *params.ChainConfig // Chain & network configuration
cacheConfig *CacheConfig // Cache configuration for pruning
db ethdb.Database // Low level persistent database to store final content in
triegc *prque.Prque // Priority queue mapping block numbers to tries to gc
gcproc time.Duration // Accumulates canonical block processing for trie dumping
hc *HeaderChain
rmLogsFeed event.Feed
chainFeed event.Feed
chainSideFeed event.Feed
chainHeadFeed event.Feed
logsFeed event.Feed
scope event.SubscriptionScope
genesisBlock *types.Block
mu sync.RWMutex // global mutex for locking chain operations
chainmu sync.RWMutex // blockchain insertion lock
procmu sync.RWMutex // block processor lock
checkpoint int // checkpoint counts towards the new checkpoint
currentBlock atomic.Value // Current head of the block chain
currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
stateCache state.Database // State database to reuse between imports (contains state cache)
bodyCache *lru.Cache // Cache for the most recent block bodies
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
receiptsCache *lru.Cache // Cache for the most recent receipts per block
blockCache *lru.Cache // Cache for the most recent entire blocks
futureBlocks *lru.Cache // future blocks are blocks added for later processing
shardStateCache *lru.Cache
lastCommitsCache *lru.Cache
epochCache *lru.Cache // Cache epoch number → first block number
randomnessCache *lru.Cache // Cache for vrf/vdf
validatorCache *lru.Cache // Cache for validator info
validatorStatsCache *lru.Cache // Cache for validator stats
validatorListCache *lru.Cache // Cache of validator list
validatorListByDelegatorCache *lru.Cache // Cache of validator list by delegator
pendingCrossLinksCache *lru.Cache // Cache of last pending crosslinks
quit chan struct{} // blockchain quit channel
running int32 // running must be called atomically
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
wg sync.WaitGroup // chain processing wait group for shutting down
engine consensus_engine.Engine
processor Processor // block processor interface
validator Validator // block and state validator interface
vmConfig vm.Config
badBlocks *lru.Cache // Bad block cache
shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block.
}
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum Validator and
// Processor.
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus_engine.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) {
if cacheConfig == nil {
cacheConfig = &CacheConfig{
TrieNodeLimit: 256 * 1024 * 1024,
TrieTimeLimit: 5 * time.Minute,
}
}
bodyCache, _ := lru.New(bodyCacheLimit)
bodyRLPCache, _ := lru.New(bodyCacheLimit)
receiptsCache, _ := lru.New(receiptsCacheLimit)
blockCache, _ := lru.New(blockCacheLimit)
futureBlocks, _ := lru.New(maxFutureBlocks)
badBlocks, _ := lru.New(badBlockLimit)
shardCache, _ := lru.New(shardCacheLimit)
commitsCache, _ := lru.New(commitsCacheLimit)
epochCache, _ := lru.New(epochCacheLimit)
randomnessCache, _ := lru.New(randomnessCacheLimit)
validatorCache, _ := lru.New(validatorCacheLimit)
validatorStatsCache, _ := lru.New(validatorStatsCacheLimit)
validatorListCache, _ := lru.New(validatorListCacheLimit)
validatorListByDelegatorCache, _ := lru.New(validatorListByDelegatorCacheLimit)
pendingCrossLinksCache, _ := lru.New(pendingCrossLinksCacheLimit)
bc := &BlockChain{
chainConfig: chainConfig,
cacheConfig: cacheConfig,
db: db,
triegc: prque.New(nil),
stateCache: state.NewDatabase(db),
quit: make(chan struct{}),
shouldPreserve: shouldPreserve,
bodyCache: bodyCache,
bodyRLPCache: bodyRLPCache,
receiptsCache: receiptsCache,
blockCache: blockCache,
futureBlocks: futureBlocks,
shardStateCache: shardCache,
lastCommitsCache: commitsCache,
epochCache: epochCache,
randomnessCache: randomnessCache,
validatorCache: validatorCache,
validatorStatsCache: validatorStatsCache,
validatorListCache: validatorListCache,
validatorListByDelegatorCache: validatorListByDelegatorCache,
pendingCrossLinksCache: pendingCrossLinksCache,
engine: engine,
vmConfig: vmConfig,
badBlocks: badBlocks,
}
bc.SetValidator(NewBlockValidator(chainConfig, bc, engine))
bc.SetProcessor(NewStateProcessor(chainConfig, bc, engine))
var err error
bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt)
if err != nil {
return nil, err
}
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
return nil, ErrNoGenesis
}
if err := bc.loadLastState(); err != nil {
return nil, err
}
// Take ownership of this particular state
go bc.update()
return bc, nil
}
// ValidateNewBlock validates new block.
func (bc *BlockChain) ValidateNewBlock(block *types.Block) error {
state, err := state.New(bc.CurrentBlock().Root(), bc.stateCache)
if err != nil {
return err
}
// Process block using the parent state as reference point.
receipts, cxReceipts, _, usedGas, err := bc.processor.Process(block, state, bc.vmConfig)
if err != nil {
bc.reportBlock(block, receipts, err)
return err
}
err = bc.Validator().ValidateState(block, bc.CurrentBlock(), state, receipts, cxReceipts, usedGas)
if err != nil {
bc.reportBlock(block, receipts, err)
return err
}
return nil
}
// IsEpochBlock returns whether this block is the first block of an epoch.
// by checking if the previous block is the last block of the previous epoch
func IsEpochBlock(block *types.Block) bool {
if block.NumberU64() == 0 {
// genesis block is the first epoch block
return true
}
return shard.Schedule.IsLastBlock(block.NumberU64() - 1)
}
// EpochFirstBlock returns the block number of the first block of an epoch.
// TODO: instead of using fixed epoch schedules, determine the first block by epoch changes.
func EpochFirstBlock(epoch *big.Int) *big.Int {
if epoch.Cmp(big.NewInt(GenesisEpoch)) == 0 {
return big.NewInt(GenesisEpoch)
}
return big.NewInt(int64(shard.Schedule.EpochLastBlock(epoch.Uint64()-1) + 1))
}
func (bc *BlockChain) getProcInterrupt() bool {
return atomic.LoadInt32(&bc.procInterrupt) == 1
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (bc *BlockChain) loadLastState() error {
// Restore the last known head block
head := rawdb.ReadHeadBlockHash(bc.db)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Msg("Empty database, resetting chain")
return bc.Reset()
}
// Make sure the entire head block is available
currentBlock := bc.GetBlockByHash(head)
if currentBlock == nil {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Str("hash", head.Hex()).Msg("Head block missing, resetting chain")
return bc.Reset()
}
// Make sure the state associated with the block is available
if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
// Dangling block without a state associated, init from scratch
utils.Logger().Warn().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Msg("Head state missing, repairing chain")
if err := bc.repair(&currentBlock); err != nil {
return err
}
}
// Everything seems to be fine, set as the head block
bc.currentBlock.Store(currentBlock)
// Restore the last known head header
currentHeader := currentBlock.Header()
if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
if header := bc.GetHeaderByHash(head); header != nil {
currentHeader = header
}
}
bc.hc.SetCurrentHeader(currentHeader)
// Restore the last known head fast block
bc.currentFastBlock.Store(currentBlock)
if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
if block := bc.GetBlockByHash(head); block != nil {
bc.currentFastBlock.Store(block)
}
}
// Issue a status log for the user
currentFastBlock := bc.CurrentFastBlock()
headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number().Uint64())
blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
utils.Logger().Info().
Str("number", currentHeader.Number().String()).
Str("hash", currentHeader.Hash().Hex()).
Str("td", headerTd.String()).
Str("age", common.PrettyAge(time.Unix(currentHeader.Time().Int64(), 0)).String()).
Msg("Loaded most recent local header")
utils.Logger().Info().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Str("td", blockTd.String()).
Str("age", common.PrettyAge(time.Unix(currentBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local full block")
utils.Logger().Info().
Str("number", currentFastBlock.Number().String()).
Str("hash", currentFastBlock.Hash().Hex()).
Str("td", fastTd.String()).
Str("age", common.PrettyAge(time.Unix(currentFastBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local fast block")
return nil
}
// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func (bc *BlockChain) SetHead(head uint64) error {
utils.Logger().Warn().Uint64("target", head).Msg("Rewinding blockchain")
bc.mu.Lock()
defer bc.mu.Unlock()
// Rewind the header chain, deleting all block bodies until then
delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) {
rawdb.DeleteBody(db, hash, num)
}
bc.hc.SetHead(head, delFn)
currentHeader := bc.hc.CurrentHeader()
// Clear out any stale content from the caches
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.receiptsCache.Purge()
bc.blockCache.Purge()
bc.futureBlocks.Purge()
bc.shardStateCache.Purge()
// Rewind the block chain, ensuring we don't end up with a stateless head block
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number().Uint64() < currentBlock.NumberU64() {
bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64()))
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil {
if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
// Rewound state missing, rolled back to before pivot, reset to genesis
bc.currentBlock.Store(bc.genesisBlock)
}
}
// Rewind the fast block in a simpleton way to the target head
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number().Uint64() < currentFastBlock.NumberU64() {
bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64()))
}
// If either blocks reached nil, reset to the genesis state
if currentBlock := bc.CurrentBlock(); currentBlock == nil {
bc.currentBlock.Store(bc.genesisBlock)
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil {
bc.currentFastBlock.Store(bc.genesisBlock)
}
currentBlock := bc.CurrentBlock()
currentFastBlock := bc.CurrentFastBlock()
rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash())
rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash())
return bc.loadLastState()
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := bc.GetBlockByHash(hash)
if block == nil {
return fmt.Errorf("non existent block [%x…]", hash[:4])
}
if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB(), 0); err != nil {
return err
}
// If all checks out, manually set the head block
bc.mu.Lock()
bc.currentBlock.Store(block)
bc.mu.Unlock()
utils.Logger().Info().
Str("number", block.Number().String()).
Str("hash", hash.Hex()).
Msg("Committed new head block")
return nil
}
// ShardID returns the shard Id of the blockchain.
// TODO: use a better solution before resharding shuffle nodes to different shards
func (bc *BlockChain) ShardID() uint32 {
return bc.CurrentBlock().ShardID()
}
// GasLimit returns the gas limit of the current HEAD block.
func (bc *BlockChain) GasLimit() uint64 {
return bc.CurrentBlock().GasLimit()
}
// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentBlock() *types.Block {
return bc.currentBlock.Load().(*types.Block)
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentFastBlock() *types.Block {
return bc.currentFastBlock.Load().(*types.Block)
}
// SetProcessor sets the processor required for making state modifications.
func (bc *BlockChain) SetProcessor(processor Processor) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.processor = processor
}
// SetValidator sets the validator which is used to validate incoming blocks.
func (bc *BlockChain) SetValidator(validator Validator) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.validator = validator
}
// Validator returns the current validator.
func (bc *BlockChain) Validator() Validator {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.validator
}
// Processor returns the current processor.
func (bc *BlockChain) Processor() Processor {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.processor
}
// State returns a new mutable state based on the current HEAD block.
func (bc *BlockChain) State() (*state.DB, error) {
return bc.StateAt(bc.CurrentBlock().Root())
}
// StateAt returns a new mutable state based on a particular point in time.
func (bc *BlockChain) StateAt(root common.Hash) (*state.DB, error) {
return state.New(root, bc.stateCache)
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() error {
return bc.ResetWithGenesisBlock(bc.genesisBlock)
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
// Dump the entire block chain and purge the caches
if err := bc.SetHead(0); err != nil {
return err
}
bc.mu.Lock()
defer bc.mu.Unlock()
// Prepare the genesis block and reinitialise the chain
rawdb.WriteBlock(bc.db, genesis)
bc.genesisBlock = genesis
bc.insert(bc.genesisBlock)
bc.currentBlock.Store(bc.genesisBlock)
bc.hc.SetGenesis(bc.genesisBlock.Header())
bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
bc.currentFastBlock.Store(bc.genesisBlock)
return nil
}
// repair tries to repair the current blockchain by rolling back the current block
// until one with associated state is found. This is needed to fix incomplete db
// writes caused either by crashes/power outages, or simply non-committed tries.
//
// This method only rolls back the current block. The current header and current
// fast block are left intact.
func (bc *BlockChain) repair(head **types.Block) error {
for {
// Abort if we've rewound to a head block that does have associated state
if _, err := state.New((*head).Root(), bc.stateCache); err == nil {
utils.Logger().Info().
Str("number", (*head).Number().String()).
Str("hash", (*head).Hash().Hex()).
Msg("Rewound blockchain to past state")
return nil
}
// Otherwise rewind one block and recheck state availability there
(*head) = bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1)
}
}
// Export writes the active chain to the given writer.
func (bc *BlockChain) Export(w io.Writer) error {
return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
}
// ExportN writes a subset of the active chain to the given writer.
func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
bc.mu.RLock()
defer bc.mu.RUnlock()
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
utils.Logger().Info().Uint64("count", last-first+1).Msg("Exporting batch of blocks")
start, reported := time.Now(), time.Now()
for nr := first; nr <= last; nr++ {
block := bc.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if err := block.EncodeRLP(w); err != nil {
return err
}
if time.Since(reported) >= statsReportLimit {
utils.Logger().Info().
Uint64("exported", block.NumberU64()-first).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Msg("Exporting blocks")
reported = time.Now()
}
}
return nil
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) insert(block *types.Block) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64())
rawdb.WriteHeadBlockHash(bc.db, block.Hash())
bc.currentBlock.Store(block)
// If the block is better than our head or is on a different chain, force update heads
if updateHeads {
bc.hc.SetCurrentHeader(block.Header())
rawdb.WriteHeadFastBlockHash(bc.db, block.Hash())
bc.currentFastBlock.Store(block)
}
}
// Genesis retrieves the chain's genesis block.
func (bc *BlockChain) Genesis() *types.Block {
return bc.genesisBlock
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (bc *BlockChain) GetBody(hash common.Hash) *types.Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyCache.Get(hash); ok {
body := cached.(*types.Body)
return body
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBody(bc.db, hash, *number)
if body == nil {
return nil
}
// Cache the found body for next time and return
bc.bodyCache.Add(hash, body)
return body
}
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyRLPCache.Get(hash); ok {
return cached.(rlp.RawValue)
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBodyRLP(bc.db, hash, *number)
if len(body) == 0 {
return nil
}
// Cache the found body for next time and return
bc.bodyRLPCache.Add(hash, body)
return body
}
// HasBlock checks if a block is fully present in the database or not.
func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool {
if bc.blockCache.Contains(hash) {
return true
}
return rawdb.HasBody(bc.db, hash, number)
}
// HasState checks if state trie is fully present in the database or not.
func (bc *BlockChain) HasState(hash common.Hash) bool {
_, err := bc.stateCache.OpenTrie(hash)
return err == nil
}
// HasBlockAndState checks if a block and associated state trie is fully present
// in the database or not, caching it if present.
func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool {
// Check first that the block itself is known
block := bc.GetBlock(hash, number)
if block == nil {
return false
}
return bc.HasState(block.Root())
}
// GetBlock retrieves a block from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block, ok := bc.blockCache.Get(hash); ok {
return block.(*types.Block)
}
block := rawdb.ReadBlock(bc.db, hash, number)
if block == nil {
return nil
}
// Cache the found block for next time and return
bc.blockCache.Add(block.Hash(), block)
return block
}
// GetBlockByHash retrieves a block from the database by hash, caching it if found.
func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
return bc.GetBlock(hash, *number)
}
// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block {
hash := rawdb.ReadCanonicalHash(bc.db, number)
if hash == (common.Hash{}) {
return nil
}
return bc.GetBlock(hash, number)
}
// GetReceiptsByHash retrieves the receipts for all transactions in a given block.
func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts {
if receipts, ok := bc.receiptsCache.Get(hash); ok {
return receipts.(types.Receipts)
}
number := rawdb.ReadHeaderNumber(bc.db, hash)
if number == nil {
return nil
}
receipts := rawdb.ReadReceipts(bc.db, hash, *number)
bc.receiptsCache.Add(hash, receipts)
return receipts
}
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
// [deprecated by eth/62]
func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
for i := 0; i < n; i++ {
block := bc.GetBlock(hash, *number)
if block == nil {
break
}
blocks = append(blocks, block)
hash = block.ParentHash()
*number--
}
return
}
// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func (bc *BlockChain) GetUnclesInChain(b *types.Block, length int) []*block.Header {
uncles := []*block.Header{}
for i := 0; b != nil && i < length; i++ {
uncles = append(uncles, b.Uncles()...)
b = bc.GetBlock(b.ParentHash(), b.NumberU64()-1)
}
return uncles
}
// TrieNode retrieves a blob of data associated with a trie node (or code hash)
// either from ephemeral in-memory cache, or from persistent storage.
func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) {
return bc.stateCache.TrieDB().Node(hash)
}
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
return
}
// Unsubscribe all subscriptions registered from blockchain
bc.scope.Close()
close(bc.quit)
atomic.StoreInt32(&bc.procInterrupt, 1)
bc.wg.Wait()
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
// - HEAD-127: So we have a hard limit on the number of blocks reexecuted
if !bc.cacheConfig.Disabled {
triedb := bc.stateCache.TrieDB()
for _, offset := range []uint64{0, 1, triesInMemory - 1} {
if number := bc.CurrentBlock().NumberU64(); number > offset {
recent := bc.GetHeaderByNumber(number - offset)
utils.Logger().Info().
Str("block", recent.Number().String()).
Str("hash", recent.Hash().Hex()).
Str("root", recent.Root().Hex()).
Msg("Writing cached state to disk")
if err := triedb.Commit(recent.Root(), true); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to commit recent state trie")
}
}
}
for !bc.triegc.Empty() {
triedb.Dereference(bc.triegc.PopItem().(common.Hash))
}
if size, _ := triedb.Size(); size != 0 {
utils.Logger().Error().Msg("Dangling trie nodes after full cleanup")
}
}
utils.Logger().Info().Msg("Blockchain manager stopped")
}
func (bc *BlockChain) procFutureBlocks() {
blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
for _, hash := range bc.futureBlocks.Keys() {
if block, exist := bc.futureBlocks.Peek(hash); exist {
blocks = append(blocks, block.(*types.Block))
}
}
if len(blocks) > 0 {
types.BlockBy(types.Number).Sort(blocks)
// Insert one by one as chain insertion needs contiguous ancestry between blocks
for i := range blocks {
bc.InsertChain(blocks[i:i+1], true /* verifyHeaders */)
}
}
}
// WriteStatus status of write
type WriteStatus byte
// Constants for WriteStatus
const (
NonStatTy WriteStatus = iota
CanonStatTy
SideStatTy
)
// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func (bc *BlockChain) Rollback(chain []common.Hash) {
bc.mu.Lock()
defer bc.mu.Unlock()
for i := len(chain) - 1; i >= 0; i-- {
hash := chain[i]
currentHeader := bc.hc.CurrentHeader()
if currentHeader != nil && currentHeader.Hash() == hash {
bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash(), currentHeader.Number().Uint64()-1))
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentFastBlock.Hash() == hash {
newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1)
if newFastBlock != nil {
bc.currentFastBlock.Store(newFastBlock)
rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash())
}
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentBlock.Hash() == hash {
newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1)
if newBlock != nil {
bc.currentBlock.Store(newBlock)
rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash())
}
}
}
}
// SetReceiptsData computes all the non-consensus fields of the receipts
func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error {
signer := types.MakeSigner(config, block.Epoch())
transactions, logIndex := block.Transactions(), uint(0)
if len(transactions) != len(receipts) {
return errors.New("transaction and receipt count mismatch")
}
for j := 0; j < len(receipts); j++ {
// The transaction hash can be retrieved from the transaction itself
receipts[j].TxHash = transactions[j].Hash()
// The contract address can be derived from the transaction itself
if transactions[j].To() == nil {
// Deriving the signer is expensive, only do if it's actually needed
from, _ := types.Sender(signer, transactions[j])
receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
}
// The used gas can be calculated based on previous receipts
if j == 0 {
receipts[j].GasUsed = receipts[j].CumulativeGasUsed
} else {
receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed
}
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j)
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
return nil
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
bc.wg.Add(1)
defer bc.wg.Done()
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(blockChain); i++ {
if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
utils.Logger().Error().
Str("number", blockChain[i].Number().String()).
Str("hash", blockChain[i].Hash().Hex()).
Str("parent", blockChain[i].ParentHash().Hex()).
Str("prevnumber", blockChain[i-1].Number().String()).
Str("prevhash", blockChain[i-1].Hash().Hex()).
Msg("Non contiguous receipt insert")
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(),
blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
}
}
var (
stats = struct{ processed, ignored int32 }{}
start = time.Now()
bytes = 0
batch = bc.db.NewBatch()
)
for i, block := range blockChain {
receipts := receiptChain[i]
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
return 0, nil
}
// Short circuit if the owner header is unknown
if !bc.HasHeader(block.Hash(), block.NumberU64()) {
return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
}
// Skip if the entire data is already known
if bc.HasBlock(block.Hash(), block.NumberU64()) {
stats.ignored++
continue
}
// Compute all the non-consensus fields of the receipts
if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil {
return i, fmt.Errorf("failed to set receipts data: %v", err)
}
// Write all the data out into the database
rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)
rawdb.WriteTxLookupEntries(batch, block)
stats.processed++
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return 0, err
}
bytes += batch.ValueSize()
batch.Reset()
}
}
if batch.ValueSize() > 0 {
bytes += batch.ValueSize()
if err := batch.Write(); err != nil {
return 0, err
}
}
// Update the head fast sync block if better
bc.mu.Lock()
head := blockChain[len(blockChain)-1]
if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case
currentFastBlock := bc.CurrentFastBlock()
if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 {
rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
bc.currentFastBlock.Store(head)
}
}
bc.mu.Unlock()
utils.Logger().Info().
Int32("count", stats.processed).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Str("age", common.PrettyAge(time.Unix(head.Time().Int64(), 0)).String()).
Str("head", head.Number().String()).
Str("hash", head.Hash().Hex()).
Str("size", common.StorageSize(bytes).String()).
Int32("ignored", stats.ignored).
Msg("Imported new block receipts")
return 0, nil
}
var lastWrite uint64
// WriteBlockWithoutState writes only the block and its metadata to the database,
// but does not write any state. This is used to construct competing side forks
// up to the point where they exceed the canonical total difficulty.
func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) {
bc.wg.Add(1)
defer bc.wg.Done()
if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil {
return err
}
rawdb.WriteBlock(bc.db, block)
return nil
}
// WriteBlockWithState writes the block and all associated state to the database.
func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, cxReceipts []*types.CXReceipt, state *state.DB) (status WriteStatus, err error) {
bc.wg.Add(1)
defer bc.wg.Done()
// Make sure no inconsistent state is leaked during insertion
bc.mu.Lock()
defer bc.mu.Unlock()
currentBlock := bc.CurrentBlock()
rawdb.WriteBlock(bc.db, block)
root, err := state.Commit(bc.chainConfig.IsS3(block.Epoch()))
if err != nil {
return NonStatTy, err
}
triedb := bc.stateCache.TrieDB()
// If we're running an archive node, always flush
if bc.cacheConfig.Disabled {
if err := triedb.Commit(root, false); err != nil {
return NonStatTy, err
}
} else {
// Full but not archive node, do proper garbage collection
triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
bc.triegc.Push(root, -int64(block.NumberU64()))
if current := block.NumberU64(); current > triesInMemory {
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
nodes, imgs = triedb.Size()
limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024
)
if nodes > limit || imgs > 4*1024*1024 {
triedb.Cap(limit - ethdb.IdealBatchSize)
}
// Find the next state trie we need to commit
header := bc.GetHeaderByNumber(current - triesInMemory)
chosen := header.Number().Uint64()
// If we exceeded out time allowance, flush an entire trie to disk
if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
// If we're exceeding limits but haven't reached a large enough memory gap,
// warn the user that the system is becoming unstable.
if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
utils.Logger().Info().
Dur("time", bc.gcproc).
Dur("allowance", bc.cacheConfig.TrieTimeLimit).
Float64("optimum", float64(chosen-lastWrite)/triesInMemory).
Msg("State in memory for too long, committing")
}
// Flush an entire trie and restart the counters
triedb.Commit(header.Root(), true)
lastWrite = chosen
bc.gcproc = 0
}
// Garbage collect anything below our required write retention
for !bc.triegc.Empty() {
root, number := bc.triegc.Pop()
if uint64(-number) > chosen {
bc.triegc.Push(root, number)
break
}
triedb.Dereference(root.(common.Hash))
}
}
}
// Write other block data using a batch.
// TODO: put following into a func
/////////////////////////// START
batch := bc.db.NewBatch()
rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)
//// Cross-shard txns
epoch := block.Header().Epoch()
if bc.chainConfig.IsCrossTx(block.Epoch()) {
shardingConfig := shard.Schedule.InstanceForEpoch(epoch)
shardNum := int(shardingConfig.NumShards())
for i := 0; i < shardNum; i++ {
if i == int(block.ShardID()) {
continue
}
shardReceipts := GetToShardReceipts(cxReceipts, uint32(i))
err := rawdb.WriteCXReceipts(batch, uint32(i), block.NumberU64(), block.Hash(), shardReceipts)
if err != nil {
utils.Logger().Debug().Err(err).Interface("shardReceipts", shardReceipts).Int("toShardID", i).Msg("WriteCXReceipts cannot write into database")
return NonStatTy, err
}
}
// Mark incomingReceipts in the block as spent
bc.WriteCXReceiptsProofSpent(block.IncomingReceipts())
}
//// VRF + VDF
//check non zero VRF field in header and add to local db
if len(block.Vrf()) > 0 {
vrfBlockNumbers, _ := bc.ReadEpochVrfBlockNums(block.Header().Epoch())
if (len(vrfBlockNumbers) > 0) && (vrfBlockNumbers[len(vrfBlockNumbers)-1] == block.NumberU64()) {
utils.Logger().Error().
Str("number", block.Number().String()).
Str("epoch", block.Header().Epoch().String()).
Msg("VRF block number is already in local db")
} else {
vrfBlockNumbers = append(vrfBlockNumbers, block.NumberU64())
err = bc.WriteEpochVrfBlockNums(block.Header().Epoch(), vrfBlockNumbers)
if err != nil {
utils.Logger().Error().
Str("number", block.Number().String()).
Str("epoch", block.Header().Epoch().String()).
Msg("failed to write VRF block number to local db")
return NonStatTy, err
}
}
}
//check non zero Vdf in header and add to local db
if len(block.Vdf()) > 0 {
err = bc.WriteEpochVdfBlockNum(block.Header().Epoch(), block.Number())
if err != nil {
utils.Logger().Error().
Str("number", block.Number().String()).
Str("epoch", block.Header().Epoch().String()).
Msg("failed to write VDF block number to local db")
return NonStatTy, err
}
}
//// Shard State and Validator Update
header := block.Header()
if len(header.ShardState()) > 0 {
// Write shard state for the new epoch
epoch := new(big.Int).Add(header.Epoch(), common.Big1)
newShardState, err := bc.WriteShardStateBytes(batch, epoch, header.ShardState())
if err != nil {
header.Logger(utils.Logger()).Warn().Err(err).Msg("cannot store shard state")
return NonStatTy, err
}
parentHeader := bc.GetHeaderByHash(header.ParentHash())
if parentHeader != nil && parentHeader.Epoch().Cmp(header.Epoch()) != 0 {
// Normally the last block of an epoch should have the same epoch as this block
// In the case beacon chain catch up, it may have a epoch larger than the current epoch
// We need to write the same shard state for this one-off epoch so other readers doesn't break
curShardState, err := bc.ReadShardState(parentHeader.Epoch())
if err != nil {
header.Logger(utils.Logger()).Warn().Err(err).Msg("cannot read current shard state")
return NonStatTy, err
}
data, err := rlp.EncodeToBytes(curShardState)
if err != nil {
return NonStatTy, err
}
_, err = bc.WriteShardStateBytes(batch, header.Epoch(), data)
if err != nil {
header.Logger(utils.Logger()).Warn().Err(err).Msg("cannot store shard state")
return NonStatTy, err
}
}
// Find all the active validator addresses and store them in db
allActiveValidators := []common.Address{}
processed := make(map[common.Address]struct{})
for i := range *newShardState {
shard := (*newShardState)[i]
for j := range shard.Slots {
slot := shard.Slots[j]
if slot.TotalStake != nil { // For external validator
_, ok := processed[slot.EcdsaAddress]
if !ok {
processed[slot.EcdsaAddress] = struct{}{}
allActiveValidators = append(allActiveValidators, shard.Slots[j].EcdsaAddress)
}
}
}
}
if err := bc.WriteActiveValidatorList(allActiveValidators); err != nil {
return NonStatTy, err
}
// Create snapshot for all validators
if err := bc.UpdateValidatorSnapshots(); err != nil {
return NonStatTy, err
}
}
// Do bookkeeping for new staking txns
for _, tx := range block.StakingTransactions() {
err = bc.UpdateStakingMetaData(tx, root)
// keep offchain database consistency with onchain we need revert
// but it should not happend unless local database corrupted
if err != nil {
utils.Logger().Debug().Msgf("oops, UpdateStakingMetaData failed, err: %+v", err)
return NonStatTy, err
}
}
// Update voting power of validators for all shards
if len(block.Header().ShardState()) > 0 {
shardState := shard.State{}
if err := rlp.DecodeBytes(block.Header().ShardState(), &shardState); err == nil {
if err = bc.UpdateValidatorVotingPower(shardState); err != nil {
utils.Logger().Err(err)
}
} else {
utils.Logger().Err(err)
}
// TODO: deal with pre-staking voting power accounting
}
// Writing validator stats (for uptime recording) for shard 0
if block.ShardID() == 0 && bc.chainConfig.IsStaking(block.Epoch()) {
parentHeader := bc.GetHeaderByHash(block.ParentHash())
if parentHeader == nil {
return NonStatTy, errors.New("no parent found for uptime accounting")
}
shardState, err := bc.ReadShardState(parentHeader.Epoch())
if err == nil {
committee := shardState.FindCommitteeByID(block.Header().ShardID())
if committee == nil {
return NonStatTy, errors.New("no shard found for cross-link")
}
members := []*bls2.PublicKey{}
for _, slot := range committee.Slots {
if slot.TotalStake != nil {
pubKey := &bls2.PublicKey{}
err := pubKey.Deserialize(slot.BlsPublicKey[:])
if err != nil {
return NonStatTy, err
}
members = append(members, pubKey)
}
}
mask, _ := bls.NewMask(members, nil)
mask.SetMask(block.Header().LastCommitBitmap())
if err = bc.UpdateValidatorUptime(committee.Slots, mask); err != nil {
utils.Logger().Err(err)
}
} else {
return NonStatTy, errors.New("failed reading shard state for uptime accounting")
}
}
//// Cross-links
if header.ShardID() == 0 && len(header.CrossLinks()) > 0 {
header.Logger(utils.Logger()).Debug().Msg("[insertChain/crosslinks] writing crosslinks into blockchain...")
crossLinks := &types.CrossLinks{}
err = rlp.DecodeBytes(header.CrossLinks(), crossLinks)
if err != nil {
header.Logger(utils.Logger()).Warn().Err(err).Msg("[insertChain/crosslinks] cannot parse cross links")
return NonStatTy, err
}
if !crossLinks.IsSorted() {
header.Logger(utils.Logger()).Warn().Err(err).Msg("[insertChain/crosslinks] cross links are not sorted")
return NonStatTy, errors.New("proposed cross links are not sorted")
}
for _, crossLink := range *crossLinks {
// Writing validator stats (for uptime recording) for other shards
if bc.chainConfig.IsStaking(crossLink.Epoch()) {
shardState, err := bc.ReadShardState(crossLink.Epoch())
if err == nil {
committee := shardState.FindCommitteeByID(crossLink.ShardID())
if committee == nil {
return NonStatTy, errors.New("no shard found for cross-link")
}
members := []*bls2.PublicKey{}
for _, slot := range committee.Slots {
if slot.TotalStake != nil {
pubKey := &bls2.PublicKey{}
err := pubKey.Deserialize(slot.BlsPublicKey[:])
if err != nil {
return NonStatTy, err
}
members = append(members, pubKey)
}
}
mask, _ := bls.NewMask(members, nil)
mask.SetMask(crossLink.Bitmap())
if err = bc.UpdateValidatorUptime(committee.Slots, mask); err != nil {
utils.Logger().Err(err)
}
} else {
return NonStatTy, errors.New("failed reading shard state for uptime accounting")
}
}
// Process crosslink
if err := bc.WriteCrossLinks(types.CrossLinks{crossLink}); err == nil {
utils.Logger().Info().Uint64("blockNum", crossLink.BlockNum()).Uint32("shardID", crossLink.ShardID()).Msg("[insertChain/crosslinks] Cross Link Added to Beaconchain")
}
bc.LastContinuousCrossLink(crossLink.ShardID(), crossLink)
}
//clean/update local database cache after crosslink inserted into blockchain
num, err := bc.DeleteCommittedFromPendingCrossLinks(*crossLinks)
utils.Logger().Debug().Msgf("DeleteCommittedFromPendingCrossLinks, crosslinks in header %d, pending crosslinks: %d, error: %+v", len(*crossLinks), num, err)
}
isFirstTimeStaking := bc.chainConfig.IsStaking(new(big.Int).Add(block.Epoch(), big.NewInt(1))) &&
len(block.Header().ShardState()) > 0 &&
!bc.chainConfig.IsStaking(block.Epoch())
if curHeader := bc.CurrentHeader(); isFirstTimeStaking &&
curHeader.ShardID() == shard.BeaconChainShardID {
bc.WriteBlockRewardAccumulator(big.NewInt(0))
}
/////////////////////////// END
// If the total difficulty is higher than our known, add it to the canonical chain
// Second clause in the if statement reduces the vulnerability to selfish mining.
// Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
// TODO: Remove reorg code, it's not used in our code
reorg := true
if reorg {
// Reorganise the chain if the parent is not the head block
if block.ParentHash() != currentBlock.Hash() {
if err := bc.reorg(currentBlock, block); err != nil {
return NonStatTy, err
}
}
// Write the positional metadata for transaction/receipt lookups and preimages
rawdb.WriteTxLookupEntries(batch, block)
rawdb.WritePreimages(batch, block.NumberU64(), state.Preimages())
// write the positional metadata for CXReceipts lookups
rawdb.WriteCxLookupEntries(batch, block)
status = CanonStatTy
} else {
status = SideStatTy
}
if err := batch.Write(); err != nil {
return NonStatTy, err
}
// Set new head.
if status == CanonStatTy {
bc.insert(block)
}
bc.futureBlocks.Remove(block.Hash())
return status, nil
}
// InsertChain attempts to insert the given batch of blocks in to the canonical
// chain or, otherwise, create a fork. If an error is returned it will return
// the index number of the failing block as well an error describing what went
// wrong.
//
// After insertion is done, all accumulated events will be fired.
func (bc *BlockChain) InsertChain(chain types.Blocks, verifyHeaders bool) (int, error) {
n, events, logs, err := bc.insertChain(chain, verifyHeaders)
bc.PostChainEvents(events, logs)
return n, err
}
// insertChain will execute the actual chain insertion and event aggregation. The
// only reason this method exists as a separate one is to make locking cleaner
// with deferred statements.
func (bc *BlockChain) insertChain(chain types.Blocks, verifyHeaders bool) (int, []interface{}, []*types.Log, error) {
// Sanity check that we have something meaningful to import
if len(chain) == 0 {
return 0, nil, nil, nil
}
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(chain); i++ {
if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() {
// Chain broke ancestry, log a message (programming error) and skip insertion
utils.Logger().Error().
Str("number", chain[i].Number().String()).
Str("hash", chain[i].Hash().Hex()).
Str("parent", chain[i].ParentHash().Hex()).
Str("prevnumber", chain[i-1].Number().String()).
Str("prevhash", chain[i-1].Hash().Hex()).
Msg("insertChain: non contiguous block insert")
return 0, nil, nil, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(),
chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4])
}
}
// Pre-checks passed, start the full block imports
bc.wg.Add(1)
defer bc.wg.Done()
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
var (
stats = insertStats{startTime: mclock.Now()}
events = make([]interface{}, 0, len(chain))
lastCanon *types.Block
coalescedLogs []*types.Log
)
var verifyHeadersResults <-chan error
// If the block header chain has not been verified, conduct header verification here.
if verifyHeaders {
headers := make([]*block.Header, len(chain))
seals := make([]bool, len(chain))
for i, block := range chain {
headers[i] = block.Header()
seals[i] = true
}
// Note that VerifyHeaders verifies headers in the chain in parallel
abort, results := bc.Engine().VerifyHeaders(bc, headers, seals)
verifyHeadersResults = results
defer close(abort)
}
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
//senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
// Iterate over the blocks and insert when the verifier permits
for i, block := range chain {
// If the chain is terminating, stop processing blocks
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
utils.Logger().Debug().Msg("Premature abort during blocks processing")
break
}
// Wait for the block's verification to complete
bstart := time.Now()
var err error
if verifyHeaders {
err = <-verifyHeadersResults
}
if err == nil {
err = bc.Validator().ValidateBody(block)
}
switch {
case err == ErrKnownBlock:
// Block and state both already known. However if the current block is below
// this number we did a rollback and we should reimport it nonetheless.
if bc.CurrentBlock().NumberU64() >= block.NumberU64() {
stats.ignored++
continue
}
case err == consensus_engine.ErrFutureBlock:
// Allow up to MaxFuture second in the future blocks. If this limit is exceeded
// the chain is discarded and processed at a later time if given.
max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks)
if block.Time().Cmp(max) > 0 {
return i, events, coalescedLogs, fmt.Errorf("future block: %v > %v", block.Time(), max)
}
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()):
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrPrunedAncestor:
// TODO: add fork choice mechanism
// Block competing with the canonical chain, store in the db, but don't process
// until the competitor TD goes above the canonical TD
//currentBlock := bc.CurrentBlock()
//localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
//externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty())
//if localTd.Cmp(externTd) > 0 {
// if err = bc.WriteBlockWithoutState(block, externTd); err != nil {
// return i, events, coalescedLogs, err
// }
// continue
//}
// Competitor chain beat canonical, gather all blocks from the common ancestor
var winner []*types.Block
parent := bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
for parent != nil && !bc.HasState(parent.Root()) {
winner = append(winner, parent)
parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
}
for j := 0; j < len(winner)/2; j++ {
winner[j], winner[len(winner)-1-j] = winner[len(winner)-1-j], winner[j]
}
// Prune in case non-empty winner chain
if len(winner) > 0 {
// Import all the pruned blocks to make the state available
bc.chainmu.Unlock()
_, evs, logs, err := bc.insertChain(winner, true /* verifyHeaders */)
bc.chainmu.Lock()
events, coalescedLogs = evs, logs
if err != nil {
return i, events, coalescedLogs, err
}
}
case err != nil:
bc.reportBlock(block, nil, err)
return i, events, coalescedLogs, err
}
// Create a new statedb using the parent block and report an
// error if it fails.
var parent *types.Block
if i == 0 {
parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
} else {
parent = chain[i-1]
}
state, err := state.New(parent.Root(), bc.stateCache)
if err != nil {
return i, events, coalescedLogs, err
}
// Process block using the parent state as reference point.
receipts, cxReceipts, logs, usedGas, err := bc.processor.Process(block, state, bc.vmConfig)
if err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
// Validate the state using the default validator
err = bc.Validator().ValidateState(block, parent, state, receipts, cxReceipts, usedGas)
if err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
proctime := time.Since(bstart)
// Write the block to the chain and get the status.
status, err := bc.WriteBlockWithState(block, receipts, cxReceipts, state)
if err != nil {
return i, events, coalescedLogs, err
}
logger := utils.Logger().With().
Str("number", block.Number().String()).
Str("hash", block.Hash().Hex()).
Int("uncles", len(block.Uncles())).
Int("txs", len(block.Transactions())).
Uint64("gas", block.GasUsed()).
Str("elapsed", common.PrettyDuration(time.Since(bstart)).String()).
Logger()
switch status {
case CanonStatTy:
logger.Info().Msg("Inserted new block")
coalescedLogs = append(coalescedLogs, logs...)
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainEvent{block, block.Hash(), logs})
lastCanon = block
// Only count canonical blocks for GC processing time
bc.gcproc += proctime
case SideStatTy:
logger.Debug().Msg("Inserted forked block")
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainSideEvent{block})
}
stats.processed++
stats.usedGas += usedGas
cache, _ := bc.stateCache.TrieDB().Size()
stats.report(chain, i, cache)
}
// Append a single chain head event if we've progressed the chain
if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
events = append(events, ChainHeadEvent{lastCanon})
}
return 0, events, coalescedLogs, nil
}
// insertStats tracks and reports on block insertion.
type insertStats struct {
queued, processed, ignored int
usedGas uint64
lastIndex int
startTime mclock.AbsTime
}
// statsReportLimit is the time limit during import and export after which we
// always print out progress. This avoids the user wondering what's going on.
const statsReportLimit = 8 * time.Second
// report prints statistics if some number of blocks have been processed
// or more than a few seconds have passed since the last message.
func (st *insertStats) report(chain []*types.Block, index int, cache common.StorageSize) {
// Fetch the timings for the batch
var (
now = mclock.Now()
elapsed = time.Duration(now) - time.Duration(st.startTime)
)
// If we're at the last block of the batch or report period reached, log
if index == len(chain)-1 || elapsed >= statsReportLimit {
var (
end = chain[index]
txs = countTransactions(chain[st.lastIndex : index+1])
)
context := utils.Logger().With().
Int("blocks", st.processed).
Int("txs", txs).
Float64("mgas", float64(st.usedGas)/1000000).
Str("elapsed", common.PrettyDuration(elapsed).String()).
Float64("mgasps", float64(st.usedGas)*1000/float64(elapsed)).
Str("number", end.Number().String()).
Str("hash", end.Hash().Hex()).
Str("cache", cache.String())
if timestamp := time.Unix(end.Time().Int64(), 0); time.Since(timestamp) > time.Minute {
context = context.Str("age", common.PrettyAge(timestamp).String())
}
if st.queued > 0 {
context = context.Int("queued", st.queued)
}
if st.ignored > 0 {
context = context.Int("ignored", st.ignored)
}
logger := context.Logger()
logger.Info().Msg("Imported new chain segment")
*st = insertStats{startTime: now, lastIndex: index + 1}
}
}
func countTransactions(chain []*types.Block) (c int) {
for _, b := range chain {
c += len(b.Transactions())
}
return c
}
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them
// to be part of the new canonical chain and accumulates potential missing transactions and post an
// event about them
func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
var (
newChain types.Blocks
oldChain types.Blocks
commonBlock *types.Block
deletedTxs types.Transactions
deletedLogs []*types.Log
// collectLogs collects the logs that were generated during the
// processing of the block that corresponds with the given hash.
// These logs are later announced as deleted.
collectLogs = func(hash common.Hash) {
// Coalesce logs and set 'Removed'.
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return
}
receipts := rawdb.ReadReceipts(bc.db, hash, *number)
for _, receipt := range receipts {
for _, log := range receipt.Logs {
del := *log
del.Removed = true
deletedLogs = append(deletedLogs, &del)
}
}
}
)
// first reduce whoever is higher bound
if oldBlock.NumberU64() > newBlock.NumberU64() {
// reduce old chain
for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
oldChain = append(oldChain, oldBlock)
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
}
} else {
// reduce new chain and append new chain blocks for inserting later on
for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
newChain = append(newChain, newBlock)
}
}
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
}
for {
if oldBlock.Hash() == newBlock.Hash() {
commonBlock = oldBlock
break
}
oldChain = append(oldChain, oldBlock)
newChain = append(newChain, newBlock)
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
oldBlock, newBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1), bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
}
}
// Ensure the user sees large reorgs
if len(oldChain) > 0 && len(newChain) > 0 {
logEvent := utils.Logger().Debug()
if len(oldChain) > 63 {
logEvent = utils.Logger().Warn()
}
logEvent.
Str("number", commonBlock.Number().String()).
Str("hash", commonBlock.Hash().Hex()).
Int("drop", len(oldChain)).
Str("dropfrom", oldChain[0].Hash().Hex()).
Int("add", len(newChain)).
Str("addfrom", newChain[0].Hash().Hex()).
Msg("Chain split detected")
} else {
utils.Logger().Error().
Str("oldnum", oldBlock.Number().String()).
Str("oldhash", oldBlock.Hash().Hex()).
Str("newnum", newBlock.Number().String()).
Str("newhash", newBlock.Hash().Hex()).
Msg("Impossible reorg, please file an issue")
}
// Insert the new chain, taking care of the proper incremental order
var addedTxs types.Transactions
for i := len(newChain) - 1; i >= 0; i-- {
// insert the block in the canonical way, re-writing history
bc.insert(newChain[i])
// write lookup entries for hash based transaction/receipt searches
rawdb.WriteTxLookupEntries(bc.db, newChain[i])
addedTxs = append(addedTxs, newChain[i].Transactions()...)
}
// calculate the difference between deleted and added transactions
diff := types.TxDifference(deletedTxs, addedTxs)
// When transactions get deleted from the database that means the
// receipts that were created in the fork must also be deleted
batch := bc.db.NewBatch()
for _, tx := range diff {
rawdb.DeleteTxLookupEntry(batch, tx.Hash())
}
batch.Write()
if len(deletedLogs) > 0 {
go bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs})
}
if len(oldChain) > 0 {
go func() {
for _, block := range oldChain {
bc.chainSideFeed.Send(ChainSideEvent{Block: block})
}
}()
}
return nil
}
// PostChainEvents iterates over the events generated by a chain insertion and
// posts them into the event feed.
// TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) {
// post event logs for further processing
if logs != nil {
bc.logsFeed.Send(logs)
}
for _, event := range events {
switch ev := event.(type) {
case ChainEvent:
bc.chainFeed.Send(ev)
case ChainHeadEvent:
bc.chainHeadFeed.Send(ev)
case ChainSideEvent:
bc.chainSideFeed.Send(ev)
}
}
}
func (bc *BlockChain) update() {
futureTimer := time.NewTicker(5 * time.Second)
defer futureTimer.Stop()
for {
select {
case <-futureTimer.C:
bc.procFutureBlocks()
case <-bc.quit:
return
}
}
}
// BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network
func (bc *BlockChain) BadBlocks() []*types.Block {
blocks := make([]*types.Block, 0, bc.badBlocks.Len())
for _, hash := range bc.badBlocks.Keys() {
if blk, exist := bc.badBlocks.Peek(hash); exist {
block := blk.(*types.Block)
blocks = append(blocks, block)
}
}
return blocks
}
// addBadBlock adds a bad block to the bad-block LRU cache
func (bc *BlockChain) addBadBlock(block *types.Block) {
bc.badBlocks.Add(block.Hash(), block)
}
// reportBlock logs a bad block error.
func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
bc.addBadBlock(block)
var receiptString string
for _, receipt := range receipts {
receiptString += fmt.Sprintf("\t%v\n", receipt)
}
utils.Logger().Error().Msgf(`
########## BAD BLOCK #########
Chain config: %v
Number: %v
Hash: 0x%x
%v
Error: %v
##############################
`, bc.chainConfig, block.Number(), block.Hash(), receiptString, err)
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (bc *BlockChain) InsertHeaderChain(chain []*block.Header, checkFreq int) (int, error) {
start := time.Now()
if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
return i, err
}
// Make sure only one thread manipulates the chain at once
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
bc.wg.Add(1)
defer bc.wg.Done()
whFunc := func(header *block.Header) error {
bc.mu.Lock()
defer bc.mu.Unlock()
_, err := bc.hc.WriteHeader(header)
return err
}
return bc.hc.InsertHeaderChain(chain, whFunc, start)
}
// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func (bc *BlockChain) writeHeader(header *block.Header) error {
bc.wg.Add(1)
defer bc.wg.Done()
bc.mu.Lock()
defer bc.mu.Unlock()
_, err := bc.hc.WriteHeader(header)
return err
}
// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the HeaderChain's internal cache.
func (bc *BlockChain) CurrentHeader() *block.Header {
return bc.hc.CurrentHeader()
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int {
return bc.hc.GetTd(hash, number)
}
// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int {
return bc.hc.GetTdByHash(hash)
}
// GetHeader retrieves a block header from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *block.Header {
return bc.hc.GetHeader(hash, number)
}
// GetHeaderByHash retrieves a block header from the database by hash, caching it if
// found.
func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *block.Header {
return bc.hc.GetHeaderByHash(hash)
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool {
return bc.hc.HasHeader(hash, number)
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
return bc.hc.GetBlockHashesFromHash(hash, max)
}
// GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
// a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
// number of blocks to be individually checked before we reach the canonical chain.
//
// Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) {
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical)
}
// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (bc *BlockChain) GetHeaderByNumber(number uint64) *block.Header {
return bc.hc.GetHeaderByNumber(number)
}
// Config retrieves the blockchain's chain configuration.
func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig }
// Engine retrieves the blockchain's consensus engine.
func (bc *BlockChain) Engine() consensus_engine.Engine { return bc.engine }
// SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.
func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription {
return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch))
}
// SubscribeChainEvent registers a subscription of ChainEvent.
func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription {
return bc.scope.Track(bc.chainFeed.Subscribe(ch))
}
// SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.
func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch))
}
// SubscribeChainSideEvent registers a subscription of ChainSideEvent.
func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription {
return bc.scope.Track(bc.chainSideFeed.Subscribe(ch))
}
// SubscribeLogsEvent registers a subscription of []*types.Log.
func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
return bc.scope.Track(bc.logsFeed.Subscribe(ch))
}
// ReadShardState retrieves sharding state given the epoch number.
func (bc *BlockChain) ReadShardState(epoch *big.Int) (shard.State, error) {
cacheKey := string(epoch.Bytes())
if cached, ok := bc.shardStateCache.Get(cacheKey); ok {
shardState := cached.(shard.State)
return shardState, nil
}
shardState, err := rawdb.ReadShardState(bc.db, epoch)
if err != nil {
return nil, err
}
bc.shardStateCache.Add(cacheKey, shardState)
return shardState, nil
}
// WriteShardState saves the given sharding state under the given epoch number.
func (bc *BlockChain) WriteShardState(
epoch *big.Int, shardState shard.State,
) error {
shardState = shardState.DeepCopy()
err := rawdb.WriteShardState(
bc.db, epoch, shardState, bc.Config().IsStaking(epoch),
)
if err != nil {
return err
}
cacheKey := string(epoch.Bytes())
bc.shardStateCache.Add(cacheKey, shardState)
return nil
}
// WriteShardStateBytes saves the given sharding state under the given epoch number.
func (bc *BlockChain) WriteShardStateBytes(db rawdb.DatabaseWriter,
epoch *big.Int, shardState []byte,
) (*shard.State, error) {
decodeShardState, err := shard.DecodeWrapper(shardState)
if err != nil {
return nil, err
}
err = rawdb.WriteShardStateBytes(db, epoch, shardState)
if err != nil {
return nil, err
}
cacheKey := string(epoch.Bytes())
bc.shardStateCache.Add(cacheKey, decodeShardState)
return &decodeShardState, nil
}
// ReadLastCommits retrieves last commits.
func (bc *BlockChain) ReadLastCommits() ([]byte, error) {
if cached, ok := bc.lastCommitsCache.Get("lastCommits"); ok {
lastCommits := cached.([]byte)
return lastCommits, nil
}
lastCommits, err := rawdb.ReadLastCommits(bc.db)
if err != nil {
return nil, err
}
return lastCommits, nil
}
// WriteLastCommits saves the commits of last block.
func (bc *BlockChain) WriteLastCommits(lastCommits []byte) error {
err := rawdb.WriteLastCommits(bc.db, lastCommits)
if err != nil {
return err
}
bc.lastCommitsCache.Add("lastCommits", lastCommits)
return nil
}
// GetVdfByNumber retrieves the rand seed given the block number, return 0 if not exist
func (bc *BlockChain) GetVdfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vdf()
}
// GetVrfByNumber retrieves the randomness preimage given the block number, return 0 if not exist
func (bc *BlockChain) GetVrfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vrf()
}
// ChainDb returns the database
func (bc *BlockChain) ChainDb() ethdb.Database { return bc.db }
// GetEpochBlockNumber returns the first block number of the given epoch.
func (bc *BlockChain) GetEpochBlockNumber(epoch *big.Int) (*big.Int, error) {
// Try cache first
cacheKey := string(epoch.Bytes())
if cachedValue, ok := bc.epochCache.Get(cacheKey); ok {
return (&big.Int{}).SetBytes([]byte(cachedValue.(string))), nil
}
blockNum, err := rawdb.ReadEpochBlockNumber(bc.db, epoch)
if err != nil {
return nil, ctxerror.New("cannot read epoch block number from database",
"epoch", epoch,
).WithCause(err)
}
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
return blockNum, nil
}
// StoreEpochBlockNumber stores the given epoch-first block number.
func (bc *BlockChain) StoreEpochBlockNumber(
epoch *big.Int, blockNum *big.Int,
) error {
cacheKey := string(epoch.Bytes())
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
if err := rawdb.WriteEpochBlockNumber(bc.db, epoch, blockNum); err != nil {
return ctxerror.New("cannot write epoch block number to database",
"epoch", epoch,
"epochBlockNum", blockNum,
).WithCause(err)
}
return nil
}
// ReadEpochVrfBlockNums retrieves block numbers with valid VRF for the specified epoch
func (bc *BlockChain) ReadEpochVrfBlockNums(epoch *big.Int) ([]uint64, error) {
vrfNumbers := []uint64{}
if cached, ok := bc.randomnessCache.Get("vrf-" + string(epoch.Bytes())); ok {
encodedVrfNumbers := cached.([]byte)
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
encodedVrfNumbers, err := rawdb.ReadEpochVrfBlockNums(bc.db, epoch)
if err != nil {
return nil, err
}
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
// WriteEpochVrfBlockNums saves block numbers with valid VRF for the specified epoch
func (bc *BlockChain) WriteEpochVrfBlockNums(epoch *big.Int, vrfNumbers []uint64) error {
encodedVrfNumbers, err := rlp.EncodeToBytes(vrfNumbers)
if err != nil {
return err
}
err = rawdb.WriteEpochVrfBlockNums(bc.db, epoch, encodedVrfNumbers)
if err != nil {
return err
}
bc.randomnessCache.Add("vrf-"+string(epoch.Bytes()), encodedVrfNumbers)
return nil
}
// ReadEpochVdfBlockNum retrieves block number with valid VDF for the specified epoch
func (bc *BlockChain) ReadEpochVdfBlockNum(epoch *big.Int) (*big.Int, error) {
if cached, ok := bc.randomnessCache.Get("vdf-" + string(epoch.Bytes())); ok {
encodedVdfNumber := cached.([]byte)
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
encodedVdfNumber, err := rawdb.ReadEpochVdfBlockNum(bc.db, epoch)
if err != nil {
return nil, err
}
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
// WriteEpochVdfBlockNum saves block number with valid VDF for the specified epoch
func (bc *BlockChain) WriteEpochVdfBlockNum(epoch *big.Int, blockNum *big.Int) error {
err := rawdb.WriteEpochVdfBlockNum(bc.db, epoch, blockNum.Bytes())
if err != nil {
return err
}
bc.randomnessCache.Add("vdf-"+string(epoch.Bytes()), blockNum.Bytes())
return nil
}
// WriteCrossLinks saves the hashes of crosslinks by shardID and blockNum combination key
func (bc *BlockChain) WriteCrossLinks(cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.WriteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum(), cl.Serialize())
}
return err
}
// DeleteCrossLinks removes the hashes of crosslinks by shardID and blockNum combination key
func (bc *BlockChain) DeleteCrossLinks(cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.DeleteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum())
}
return err
}
// ReadCrossLink retrieves crosslink given shardID and blockNum.
func (bc *BlockChain) ReadCrossLink(shardID uint32, blockNum uint64) (*types.CrossLink, error) {
bytes, err := rawdb.ReadCrossLinkShardBlock(bc.db, shardID, blockNum)
if err != nil {
return nil, err
}
crossLink, err := types.DeserializeCrossLink(bytes)
return crossLink, err
}
// WriteShardLastCrossLink saves the last crosslink of a shard
func (bc *BlockChain) WriteShardLastCrossLink(shardID uint32, cl types.CrossLink) error {
return rawdb.WriteShardLastCrossLink(bc.db, cl.ShardID(), cl.Serialize())
}
// LastContinuousCrossLink saves the last crosslink of a shard
// This function will update the latest crosslink in the sense that
// any previous block's crosslink is received up to this point
// there is no missing hole between genesis to this crosslink of given shardID
func (bc *BlockChain) LastContinuousCrossLink(shardID uint32, cl types.CrossLink) error {
cl0, err := bc.ReadShardLastCrossLink(shardID)
if cl0 == nil {
bc.WriteShardLastCrossLink(shardID, cl)
return nil
}
if err != nil {
return err
}
newCheckpoint := uint64(0)
for i := cl0.BlockNum() + 1; i < cl.BlockNum(); i++ {
tmp, err := bc.ReadCrossLink(shardID, i)
if err != nil || tmp == nil {
newCheckpoint = i - 1
break
}
if i == cl.BlockNum()-1 {
newCheckpoint = cl.BlockNum()
}
}
if newCheckpoint > 0 {
utils.Logger().Debug().Msgf("LastContinuousCrossLink: latest checkpoint blockNum %d", newCheckpoint)
cln, err := bc.ReadCrossLink(shardID, newCheckpoint)
if err != nil {
return err
}
return rawdb.WriteShardLastCrossLink(bc.db, cln.ShardID(), cln.Serialize())
}
return nil
}
// ReadShardLastCrossLink retrieves the last crosslink of a shard.
func (bc *BlockChain) ReadShardLastCrossLink(shardID uint32) (*types.CrossLink, error) {
bytes, err := rawdb.ReadShardLastCrossLink(bc.db, shardID)
if err != nil {
return nil, err
}
crossLink, err := types.DeserializeCrossLink(bytes)
return crossLink, err
}
// ReadPendingCrossLinks retrieves pending crosslinks
func (bc *BlockChain) ReadPendingCrossLinks() ([]types.CrossLink, error) {
bytes := []byte{}
if cached, ok := bc.pendingCrossLinksCache.Get("pendingCLs"); ok {
bytes = cached.([]byte)
} else {
bytes, err := rawdb.ReadPendingCrossLinks(bc.db)
if err != nil || len(bytes) == 0 {
utils.Logger().Info().Err(err).Int("dataLen", len(bytes)).Msg("ReadPendingCrossLinks")
return nil, err
}
}
cls := []types.CrossLink{}
if err := rlp.DecodeBytes(bytes, &cls); err != nil {
utils.Logger().Error().Err(err).Msg("Invalid pending crosslink RLP decoding")
return nil, err
}
return cls, nil
}
// WritePendingCrossLinks saves the pending crosslinks
func (bc *BlockChain) WritePendingCrossLinks(cls []types.CrossLink) error {
bytes, err := rlp.EncodeToBytes(cls)
if err != nil {
utils.Logger().Error().Msg("[WritePendingCrossLinks] Failed to encode pending crosslinks")
return err
}
if err := rawdb.WritePendingCrossLinks(bc.db, bytes); err != nil {
return err
}
by, err := rlp.EncodeToBytes(cls)
if err == nil {
bc.pendingCrossLinksCache.Add("pendingCLs", by)
}
return nil
}
// AddPendingCrossLinks appends pending crosslinks
func (bc *BlockChain) AddPendingCrossLinks(pendingCLs []types.CrossLink) (int, error) {
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
err := bc.WritePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
cls = append(cls, pendingCLs...)
err = bc.WritePendingCrossLinks(cls)
return len(cls), err
}
// DeleteCommittedFromPendingCrossLinks delete pending crosslinks that already committed (i.e. passed in the params)
func (bc *BlockChain) DeleteCommittedFromPendingCrossLinks(crossLinks []types.CrossLink) (int, error) {
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
return 0, err
}
m := map[uint32]map[uint64](struct{}){}
for _, cl := range crossLinks {
if _, ok := m[cl.ShardID()]; !ok {
m[cl.ShardID()] = map[uint64](struct{}){}
}
m[cl.ShardID()][cl.BlockNum()] = struct{}{}
}
pendingCLs := []types.CrossLink{}
Loop:
for _, cl := range cls {
if _, ok := m[cl.ShardID()]; ok {
if _, ok1 := m[cl.ShardID()][cl.BlockNum()]; ok1 {
continue Loop
}
}
pendingCLs = append(pendingCLs, cl)
}
err = bc.WritePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
// IsSameLeaderAsPreviousBlock retrieves a block from the database by number, caching it
func (bc *BlockChain) IsSameLeaderAsPreviousBlock(block *types.Block) bool {
if IsEpochBlock(block) {
return false
}
previousHeader := bc.GetHeaderByNumber(block.NumberU64() - 1)
return block.Coinbase() == previousHeader.Coinbase()
}
// ChainDB ...
// TODO(ricl): in eth, this is not exposed. I expose it here because I need it in Harmony object.
// In eth, chainDB is initialized within Ethereum object
func (bc *BlockChain) ChainDB() ethdb.Database {
return bc.db
}
// GetVMConfig returns the block chain VM config.
func (bc *BlockChain) GetVMConfig() *vm.Config {
return &bc.vmConfig
}
// GetToShardReceipts filters the cross shard receipts with given destination shardID
func GetToShardReceipts(cxReceipts types.CXReceipts, shardID uint32) types.CXReceipts {
cxs := types.CXReceipts{}
for i := range cxReceipts {
cx := cxReceipts[i]
if cx.ToShardID == shardID {
cxs = append(cxs, cx)
}
}
return cxs
}
// ReadCXReceipts retrieves the cross shard transaction receipts of a given shard
func (bc *BlockChain) ReadCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash) (types.CXReceipts, error) {
cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, blockNum, blockHash)
if err != nil || len(cxs) == 0 {
return nil, err
}
return cxs, nil
}
// WriteCXReceipts saves the cross shard transaction receipts of a given shard
func (bc *BlockChain) WriteCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash, receipts types.CXReceipts) error {
return rawdb.WriteCXReceipts(bc.db, shardID, blockNum, blockHash, receipts)
}
// CXMerkleProof calculates the cross shard transaction merkle proof of a given destination shard
func (bc *BlockChain) CXMerkleProof(shardID uint32, block *types.Block) (*types.CXMerkleProof, error) {
proof := &types.CXMerkleProof{BlockNum: block.Number(), BlockHash: block.Hash(), ShardID: block.ShardID(), CXReceiptHash: block.Header().OutgoingReceiptHash(), CXShardHashes: []common.Hash{}, ShardIDs: []uint32{}}
cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, block.NumberU64(), block.Hash())
if err != nil || cxs == nil {
return nil, err
}
epoch := block.Header().Epoch()
shardingConfig := shard.Schedule.InstanceForEpoch(epoch)
shardNum := int(shardingConfig.NumShards())
for i := 0; i < shardNum; i++ {
receipts, err := bc.ReadCXReceipts(uint32(i), block.NumberU64(), block.Hash())
if err != nil || len(receipts) == 0 {
continue
} else {
hash := types.DeriveSha(receipts)
proof.CXShardHashes = append(proof.CXShardHashes, hash)
proof.ShardIDs = append(proof.ShardIDs, uint32(i))
}
}
if len(proof.ShardIDs) == 0 {
return nil, nil
}
return proof, nil
}
// LatestCXReceiptsCheckpoint returns the latest checkpoint
func (bc *BlockChain) LatestCXReceiptsCheckpoint(shardID uint32) uint64 {
blockNum, _ := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID)
return blockNum
}
// NextCXReceiptsCheckpoint returns the next checkpoint blockNum
func (bc *BlockChain) NextCXReceiptsCheckpoint(currentNum uint64, shardID uint32) uint64 {
lastCheckpoint, _ := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID)
newCheckpoint := lastCheckpoint
// the new checkpoint will not exceed currentNum+1
for num := lastCheckpoint; num <= currentNum+1; num++ {
newCheckpoint = num
by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, num)
if by == rawdb.NAByte {
// TODO chao: check if there is IncompingReceiptsHash in crosslink header
// if the rootHash is non-empty, it means incomingReceipts are not delivered
// otherwise, it means there is no cross-shard transactions for this block
continue
}
if by == rawdb.SpentByte {
continue
}
// the first unspent blockHash found, break the loop
break
}
return newCheckpoint
}
// updateCXReceiptsCheckpoints will update the checkpoint and clean spent receipts upto checkpoint
func (bc *BlockChain) updateCXReceiptsCheckpoints(shardID uint32, currentNum uint64) {
lastCheckpoint, err := rawdb.ReadCXReceiptsProofUnspentCheckpoint(bc.db, shardID)
if err != nil {
utils.Logger().Warn().Msg("[updateCXReceiptsCheckpoints] Cannot get lastCheckpoint")
}
newCheckpoint := bc.NextCXReceiptsCheckpoint(currentNum, shardID)
if lastCheckpoint == newCheckpoint {
return
}
utils.Logger().Debug().Uint64("lastCheckpoint", lastCheckpoint).Uint64("newCheckpont", newCheckpoint).Msg("[updateCXReceiptsCheckpoints]")
for num := lastCheckpoint; num < newCheckpoint; num++ {
rawdb.DeleteCXReceiptsProofSpent(bc.db, shardID, num)
}
rawdb.WriteCXReceiptsProofUnspentCheckpoint(bc.db, shardID, newCheckpoint)
}
// WriteCXReceiptsProofSpent mark the CXReceiptsProof list with given unspent status
// true: unspent, false: spent
func (bc *BlockChain) WriteCXReceiptsProofSpent(cxps []*types.CXReceiptsProof) {
for _, cxp := range cxps {
rawdb.WriteCXReceiptsProofSpent(bc.db, cxp)
}
}
// IsSpent checks whether a CXReceiptsProof is unspent
func (bc *BlockChain) IsSpent(cxp *types.CXReceiptsProof) bool {
shardID := cxp.MerkleProof.ShardID
blockNum := cxp.MerkleProof.BlockNum.Uint64()
by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, blockNum)
if by == rawdb.SpentByte || cxp.MerkleProof.BlockNum.Uint64() < bc.LatestCXReceiptsCheckpoint(cxp.MerkleProof.ShardID) {
return true
}
return false
}
// UpdateCXReceiptsCheckpointsByBlock cleans checkpoints and update latest checkpoint based on incomingReceipts of the given block
func (bc *BlockChain) UpdateCXReceiptsCheckpointsByBlock(block *types.Block) {
m := make(map[uint32]uint64)
for _, cxp := range block.IncomingReceipts() {
shardID := cxp.MerkleProof.ShardID
blockNum := cxp.MerkleProof.BlockNum.Uint64()
if _, ok := m[shardID]; !ok {
m[shardID] = blockNum
} else if m[shardID] < blockNum {
m[shardID] = blockNum
}
}
for k, v := range m {
utils.Logger().Debug().Uint32("shardID", k).Uint64("blockNum", v).Msg("[CleanCXReceiptsCheckpoints] Cleaning CXReceiptsProof upto")
bc.updateCXReceiptsCheckpoints(k, v)
}
}
// ReadTxLookupEntry returns where the given transaction resides in the chain,
// as a (block hash, block number, index in transaction list) triple.
// returns 0, 0 if not found
func (bc *BlockChain) ReadTxLookupEntry(txID common.Hash) (common.Hash, uint64, uint64) {
return rawdb.ReadTxLookupEntry(bc.db, txID)
}
// ReadValidatorInformationAt reads staking information of given validatorWrapper at a specific state root
func (bc *BlockChain) ReadValidatorInformationAt(addr common.Address, root common.Hash) (*staking.ValidatorWrapper, error) {
state, err := bc.StateAt(root)
if err != nil || state == nil {
return nil, err
}
wrapper := state.GetStakingInfo(addr)
if wrapper == nil {
return nil, fmt.Errorf("ValidatorData not found: %v", addr)
}
return wrapper, nil
}
// ReadValidatorInformation reads staking information of given validator address
func (bc *BlockChain) ReadValidatorInformation(addr common.Address) (*staking.ValidatorWrapper, error) {
return bc.ReadValidatorInformationAt(addr, bc.CurrentBlock().Root())
}
// ReadValidatorSnapshot reads the snapshot staking information of given validator address
func (bc *BlockChain) ReadValidatorSnapshot(addr common.Address) (*staking.ValidatorWrapper, error) {
if cached, ok := bc.validatorCache.Get("validator-snapshot-" + string(addr.Bytes())); ok {
by := cached.([]byte)
v := staking.ValidatorWrapper{}
if err := rlp.DecodeBytes(by, &v); err != nil {
return nil, err
}
return &v, nil
}
return rawdb.ReadValidatorSnapshot(bc.db, addr)
}
// WriteValidatorSnapshots writes the snapshot of provided list of validators
func (bc *BlockChain) WriteValidatorSnapshots(addrs []common.Address) error {
// Read all validator's current data
validators := []*staking.ValidatorWrapper{}
for _, addr := range addrs {
validator, err := bc.ReadValidatorInformation(addr)
if err != nil {
return err
}
validators = append(validators, validator)
}
// Batch write the current data as snapshot
batch := bc.db.NewBatch()
for i := range validators {
err := rawdb.WriteValidatorSnapshot(batch, validators[i])
if err != nil {
return err
}
}
if err := batch.Write(); err != nil {
return err
}
// Update cache
for i := range validators {
by, err := rlp.EncodeToBytes(validators[i])
if err == nil {
bc.validatorCache.Add("validator-snapshot-"+string(validators[i].Address.Bytes()), by)
}
}
return nil
}
// ReadValidatorStats reads the stats of a validator
func (bc *BlockChain) ReadValidatorStats(addr common.Address) (*staking.ValidatorStats, error) {
return rawdb.ReadValidatorStats(bc.db, addr)
}
// UpdateValidatorUptime writes the stats for the committee
func (bc *BlockChain) UpdateValidatorUptime(slots shard.SlotList, mask *bls.Mask) error {
blsToAddress := make(map[shard.BlsPublicKey]common.Address)
for _, slot := range slots {
blsToAddress[slot.BlsPublicKey] = slot.EcdsaAddress
}
batch := bc.db.NewBatch()
blsKeyBytes := shard.BlsPublicKey{}
for i, blsPubKey := range mask.Publics {
err := blsKeyBytes.FromLibBLSPublicKey(blsPubKey)
if err != nil {
return err
}
if addr, ok := blsToAddress[blsKeyBytes]; ok {
// Retrieve the stats and add new counts
stats, err := rawdb.ReadValidatorStats(bc.db, addr)
if stats == nil {
stats = &staking.ValidatorStats{big.NewInt(0), big.NewInt(0), big.NewInt(0), numeric.NewDec(0), numeric.NewDec(0)}
}
stats.NumBlocksToSign.Add(stats.NumBlocksToSign, big.NewInt(1))
enabled, err := mask.IndexEnabled(i)
if err != nil {
return err
}
if enabled {
stats.NumBlocksSigned.Add(stats.NumBlocksSigned, big.NewInt(1))
}
// TODO: record time being jailed.
err = rawdb.WriteValidatorStats(batch, addr, stats)
if err != nil {
return err
}
} else {
return fmt.Errorf("Bls public key not found in committee: %x", blsKeyBytes)
}
}
if err := batch.Write(); err != nil {
return err
}
// TODO: Update cache
return nil
}
// UpdateValidatorVotingPower writes the voting power for the committees
func (bc *BlockChain) UpdateValidatorVotingPower(state shard.State) error {
totalEffectiveStake := make(map[uint32]numeric.Dec)
addrToEffectiveStakes := make(map[common.Address]map[uint32]numeric.Dec)
for _, committee := range state {
for _, slot := range committee.Slots {
if slot.TotalStake != nil {
if _, ok := addrToEffectiveStakes[slot.EcdsaAddress]; !ok {
addrToEffectiveStakes[slot.EcdsaAddress] = map[uint32]numeric.Dec{}
}
if _, ok := addrToEffectiveStakes[slot.EcdsaAddress][committee.ShardID]; !ok {
addrToEffectiveStakes[slot.EcdsaAddress][committee.ShardID] = numeric.NewDec(0)
}
addrToEffectiveStakes[slot.EcdsaAddress][committee.ShardID] = addrToEffectiveStakes[slot.EcdsaAddress][committee.ShardID].Add(*slot.TotalStake)
if _, ok := totalEffectiveStake[committee.ShardID]; !ok {
totalEffectiveStake[committee.ShardID] = numeric.NewDec(0)
}
totalEffectiveStake[committee.ShardID] = totalEffectiveStake[committee.ShardID].Add(*slot.TotalStake)
}
}
}
batch := bc.db.NewBatch()
for addr, votingPowers := range addrToEffectiveStakes {
addrTotalVotingPower := numeric.NewDec(0) // Total voting power is the average voting power across all shards
addrTotalEffectiveStake := numeric.NewDec(0)
for shardID, eStake := range votingPowers {
addrTotalVotingPower = addrTotalVotingPower.Add(eStake.Quo(totalEffectiveStake[shardID]))
addrTotalEffectiveStake = addrTotalEffectiveStake.Add(eStake)
}
// Retrieve the stats and update
stats, err := rawdb.ReadValidatorStats(bc.db, addr)
if stats == nil {
stats = &staking.ValidatorStats{big.NewInt(0), big.NewInt(0), big.NewInt(0), numeric.NewDec(0), numeric.NewDec(0)}
}
stats.AvgVotingPower = addrTotalVotingPower.Quo(numeric.NewDec(int64(len(state))))
stats.TotalEffectiveStake = addrTotalEffectiveStake
err = rawdb.WriteValidatorStats(batch, addr, stats)
if err != nil {
return err
}
}
if err := batch.Write(); err != nil {
return err
}
// TODO: Update cache
return nil
}
// DeleteValidatorSnapshots deletes the snapshot staking information of given validator address
func (bc *BlockChain) DeleteValidatorSnapshots(addrs []common.Address) error {
batch := bc.db.NewBatch()
for i := range addrs {
rawdb.DeleteValidatorSnapshot(batch, addrs[i])
}
if err := batch.Write(); err != nil {
return err
}
for i := range addrs {
bc.validatorCache.Remove("validator-snapshot-" + string(addrs[i].Bytes()))
}
return nil
}
// UpdateValidatorSnapshots updates the content snapshot of all validators
func (bc *BlockChain) UpdateValidatorSnapshots() error {
allValidators, err := bc.ReadValidatorList()
if err != nil {
return err
}
// TODO: enable this once we allow validator to delete itself.
//err = bc.DeleteValidatorSnapshots(allValidators)
//if err != nil {
// return err
//}
if err := bc.WriteValidatorSnapshots(allValidators); err != nil {
return err
}
return nil
}
// ReadValidatorList reads the addresses of current all validators
func (bc *BlockChain) ReadValidatorList() ([]common.Address, error) {
if cached, ok := bc.validatorListCache.Get("validatorList"); ok {
by := cached.([]byte)
m := []common.Address{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadValidatorList(bc.db, false)
}
// WriteValidatorList writes the list of validator addresses to database
func (bc *BlockChain) WriteValidatorList(addrs []common.Address) error {
err := rawdb.WriteValidatorList(bc.db, addrs, false)
if err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(addrs)
if err == nil {
bc.validatorListCache.Add("validatorList", bytes)
}
return nil
}
// ReadActiveValidatorList reads the addresses of active validators
func (bc *BlockChain) ReadActiveValidatorList() ([]common.Address, error) {
if cached, ok := bc.validatorListCache.Get("activeValidatorList"); ok {
by := cached.([]byte)
m := []common.Address{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadValidatorList(bc.db, true)
}
// WriteActiveValidatorList writes the list of active validator addresses to database
func (bc *BlockChain) WriteActiveValidatorList(addrs []common.Address) error {
err := rawdb.WriteValidatorList(bc.db, addrs, true)
if err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(addrs)
if err == nil {
bc.validatorListCache.Add("activeValidatorList", bytes)
}
return nil
}
// ReadDelegationsByDelegator reads the addresses of validators delegated by a delegator
func (bc *BlockChain) ReadDelegationsByDelegator(delegator common.Address) ([]staking.DelegationIndex, error) {
if cached, ok := bc.validatorListByDelegatorCache.Get(string(delegator.Bytes())); ok {
by := cached.([]byte)
m := []staking.DelegationIndex{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadDelegationsByDelegator(bc.db, delegator)
}
// WriteDelegationsByDelegator writes the list of validator addresses to database
func (bc *BlockChain) WriteDelegationsByDelegator(delegator common.Address, indices []staking.DelegationIndex) error {
err := rawdb.WriteDelegationsByDelegator(bc.db, delegator, indices)
if err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(indices)
if err == nil {
bc.validatorListByDelegatorCache.Add(string(delegator.Bytes()), bytes)
}
return nil
}
// UpdateStakingMetaData updates the validator's and the delegator's meta data according to staking transaction
func (bc *BlockChain) UpdateStakingMetaData(tx *staking.StakingTransaction, root common.Hash) error {
// TODO: simply the logic here in staking/types/transaction.go
payload, err := tx.RLPEncodeStakeMsg()
if err != nil {
return err
}
decodePayload, err := staking.RLPDecodeStakeMsg(payload, tx.StakingType())
if err != nil {
return err
}
switch tx.StakingType() {
case staking.DirectiveCreateValidator:
createValidator := decodePayload.(*staking.CreateValidator)
// TODO: batch add validator list instead of one by one
list, err := bc.ReadValidatorList()
if err != nil {
return err
}
if list == nil {
list = []common.Address{}
}
beforeLen := len(list)
list = utils.AppendIfMissing(list, createValidator.ValidatorAddress)
if len(list) > beforeLen {
err = bc.WriteValidatorList(list)
}
// Add self delegation into the index
delegations, err := bc.ReadDelegationsByDelegator(createValidator.ValidatorAddress)
if err != nil {
return err
}
delegations = append(delegations, staking.DelegationIndex{
createValidator.ValidatorAddress,
0,
})
err = bc.WriteDelegationsByDelegator(createValidator.ValidatorAddress, delegations)
return err
case staking.DirectiveEditValidator:
case staking.DirectiveDelegate:
delegate := decodePayload.(*staking.Delegate)
return bc.addDelegationIndex(delegate.DelegatorAddress, delegate.ValidatorAddress, root)
case staking.DirectiveUndelegate:
case staking.DirectiveCollectRewards:
// TODO: Check whether the delegation reward can be cleared after reward is collected
default:
}
return nil
}
// BlockRewardAccumulator ..
func (bc *BlockChain) BlockRewardAccumulator() (*big.Int, error) {
return rawdb.ReadBlockRewardAccumulator(bc.db)
}
// WriteBlockRewardAccumulator directly writes the BlockRewardAccumulator value
func (bc *BlockChain) WriteBlockRewardAccumulator(reward *big.Int) error {
return rawdb.WriteBlockRewardAccumulator(bc.db, reward)
}
//UpdateBlockRewardAccumulator ..
func (bc *BlockChain) UpdateBlockRewardAccumulator(diff *big.Int) error {
current, err := bc.BlockRewardAccumulator()
if err != nil {
return err
}
return bc.WriteBlockRewardAccumulator(new(big.Int).Add(current, diff))
}
func (bc *BlockChain) addDelegationIndex(delegatorAddress, validatorAddress common.Address, root common.Hash) error {
// Get existing delegations
delegations, err := bc.ReadDelegationsByDelegator(delegatorAddress)
if err != nil {
return err
}
// If there is an existing delegation, just return
validatorAddressBytes := validatorAddress.Bytes()
for _, delegation := range delegations {
if bytes.Compare(delegation.ValidatorAddress.Bytes(), validatorAddressBytes) == 0 {
return nil
}
}
// Found the delegation from state and add the delegation index
// Note this should read from the state of current block in concern
wrapper, err := bc.ReadValidatorInformationAt(validatorAddress, root)
if err != nil {
return err
}
for i := range wrapper.Delegations {
if bytes.Compare(wrapper.Delegations[i].DelegatorAddress.Bytes(), delegatorAddress.Bytes()) == 0 {
delegations = append(delegations, staking.DelegationIndex{
validatorAddress,
uint64(i),
})
}
}
return bc.WriteDelegationsByDelegator(delegatorAddress, delegations)
}
// ValidatorCandidates returns the up to date validator candidates for next epoch
func (bc *BlockChain) ValidatorCandidates() []common.Address {
list, err := bc.ReadValidatorList()
if err != nil {
return make([]common.Address, 0)
}
return list
}
// DelegatorsInformation returns up to date information of delegators of a given validator address
func (bc *BlockChain) DelegatorsInformation(addr common.Address) []*staking.Delegation {
return make([]*staking.Delegation, 0)
}