The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/cmd/client/txgen/main.go

326 lines
12 KiB

package main
import (
"flag"
"fmt"
"math/big"
"math/rand"
"os"
"path"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
bls2 "github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/client"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/common/denominations"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/consensus/quorum"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/crypto/bls"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/genesis"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/shardchain"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/node"
"github.com/harmony-one/harmony/p2p"
p2p_host "github.com/harmony-one/harmony/p2p/host"
"github.com/harmony-one/harmony/p2p/p2pimpl"
p2putils "github.com/harmony-one/harmony/p2p/utils"
"github.com/harmony-one/harmony/shard"
)
var (
version string
builtBy string
builtAt string
commit string
stateMutex sync.Mutex
)
const (
checkFrequency = 2 //checkfrequency checks whether the transaction generator is ready to send the next batch of transactions.
)
// Settings is the settings for TX generation. No Cross-Shard Support!
type Settings struct {
NumOfAddress int
MaxNumTxsPerBatch int
}
func printVersion(me string) {
fmt.Fprintf(os.Stderr, "Harmony (C) 2019. %v, version %v-%v (%v %v)\n", path.Base(me), version, commit, builtBy, builtAt)
os.Exit(0)
}
// The main entrance for the transaction generator program which simulate transactions and send to the network for
// processing.
var (
ip = flag.String("ip", "127.0.0.1", "IP of the node")
port = flag.String("port", "9999", "port of the node.")
numTxns = flag.Int("numTxns", 100, "number of transactions to send per message")
logFolder = flag.String("log_folder", "latest", "the folder collecting the logs of this execution")
duration = flag.Int("duration", 30, "duration of the tx generation in second. If it's negative, the experiment runs forever.")
versionFlag = flag.Bool("version", false, "Output version info")
crossShardRatio = flag.Int("cross_shard_ratio", 30, "The percentage of cross shard transactions.") //Keeping this for backward compatibility
shardIDFlag = flag.Int("shardID", 0, "The shardID the node belongs to.")
// Key file to store the private key
keyFile = flag.String("key", "./.txgenkey", "the private key file of the txgen")
// logging verbosity
verbosity = flag.Int("verbosity", 5, "Logging verbosity: 0=silent, 1=error, 2=warn, 3=info, 4=debug, 5=detail (default: 5)")
)
func setUpTXGen() *node.Node {
nodePriKey, _, err := utils.LoadKeyFromFile(*keyFile)
if err != nil {
utils.FatalErrMsg(err, "cannot load key from %s", *keyFile)
}
peerPubKey := bls.RandPrivateKey().GetPublicKey()
if peerPubKey == nil {
utils.FatalErrMsg(err, "cannot generate BLS key")
}
shardID := *shardIDFlag
selfPeer := p2p.Peer{IP: *ip, Port: *port, ConsensusPubKey: peerPubKey}
// Nodes containing blockchain data to mirror the shards' data in the network
myhost, err := p2pimpl.NewHost(&selfPeer, nodePriKey)
if err != nil {
fmt.Fprintf(os.Stderr, "Error :%v \n", err)
os.Exit(1)
}
decider := quorum.NewDecider(quorum.SuperMajorityVote)
consensusObj, err := consensus.New(myhost, uint32(shardID), p2p.Peer{}, nil, decider)
chainDBFactory := &shardchain.MemDBFactory{}
txGen := node.New(myhost, consensusObj, chainDBFactory, false) //Changed it : no longer archival node.
txGen.Client = client.NewClient(txGen.GetHost(), uint32(shardID))
consensusObj.ChainReader = txGen.Blockchain()
genesisShardingConfig := shard.Schedule.InstanceForEpoch(big.NewInt(core.GenesisEpoch))
startIdx := 0
endIdx := startIdx + genesisShardingConfig.NumNodesPerShard()
pubs := []*bls2.PublicKey{}
for _, acct := range genesis.HarmonyAccounts[startIdx:endIdx] {
pub := &bls2.PublicKey{}
if err := pub.DeserializeHexStr(acct.BlsPublicKey); err != nil {
fmt.Printf("Can not deserialize public key. err: %v", err)
os.Exit(1)
}
pubs = append(pubs, pub)
}
consensusObj.Decider.UpdateParticipants(pubs)
txGen.NodeConfig.SetRole(nodeconfig.ClientNode)
if shardID == 0 {
txGen.NodeConfig.SetShardGroupID(nodeconfig.GroupIDBeacon)
} else {
txGen.NodeConfig.SetShardGroupID(nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(shardID)))
}
txGen.NodeConfig.SetIsClient(true)
return txGen
}
func main() {
flag.Var(&p2putils.BootNodes, "bootnodes", "a list of bootnode multiaddress")
flag.Parse()
if *versionFlag {
printVersion(os.Args[0])
}
// Logging setup
utils.SetLogContext(*port, *ip)
utils.SetLogVerbosity(log.Lvl(*verbosity))
if len(p2putils.BootNodes) == 0 {
bootNodeAddrs, err := p2putils.StringsToAddrs(p2putils.DefaultBootNodeAddrStrings)
if err != nil {
utils.FatalErrMsg(err, "cannot parse default bootnode list")
}
p2putils.BootNodes = bootNodeAddrs
}
// Init with LibP2P enabled, FIXME: (leochen) right now we support only one shard
setting := Settings{
NumOfAddress: 10000,
MaxNumTxsPerBatch: *numTxns,
}
shardID := *shardIDFlag
utils.Logger().Debug().
Int("cx ratio", *crossShardRatio).
Msg("Cross Shard Ratio Is Set But not used")
// TODO(Richard): refactor this chuck to a single method
// Setup a logger to stdout and log file.
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder)
h := log.MultiHandler(
log.StreamHandler(os.Stdout, log.TerminalFormat(false)),
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
)
log.Root().SetHandler(h)
txGen := setUpTXGen()
txGen.ServiceManagerSetup()
txGen.RunServices()
start := time.Now()
totalTime := float64(*duration)
utils.Logger().Debug().
Float64("totalTime", totalTime).
Bool("RunForever", isDurationForever(totalTime)).
Msg("Total Duration")
ticker := time.NewTicker(checkFrequency * time.Second)
txGen.DoSyncWithoutConsensus()
syncLoop:
for {
t := time.Now()
if totalTime > 0 && t.Sub(start).Seconds() >= totalTime {
utils.Logger().Debug().
Int("duration", (int(t.Sub(start)))).
Time("startTime", start).
Float64("totalTime", totalTime).
Msg("Generator timer ended in syncLoop.")
break syncLoop
}
select {
case <-ticker.C:
if txGen.State.String() == "NodeReadyForConsensus" {
utils.Logger().Debug().
Str("txgen node", txGen.SelfPeer.String()).
Str("Node State", txGen.State.String()).
Msg("Generator is now in Sync.")
ticker.Stop()
break syncLoop
}
}
}
readySignal := make(chan uint32)
// This func is used to update the client's blockchain when new blocks are received from the leaders
updateBlocksFunc := func(blocks []*types.Block) {
utils.Logger().Info().
Uint64("block num", blocks[0].NumberU64()).
Msg("[Txgen] Received new block")
for _, block := range blocks {
shardID := block.ShardID()
if txGen.Consensus.ShardID == shardID {
utils.Logger().Info().
Int("txNum", len(block.Transactions())).
Uint32("shardID", shardID).
Str("preHash", block.ParentHash().Hex()).
Uint64("currentBlock", txGen.Blockchain().CurrentBlock().NumberU64()).
Uint64("incoming block", block.NumberU64()).
Msg("Got block from leader")
if block.NumberU64()-txGen.Blockchain().CurrentBlock().NumberU64() == 1 {
if _, err := txGen.Blockchain().InsertChain([]*types.Block{block}, true); err != nil {
utils.Logger().Error().
Err(err).
Msg("Error when adding new block")
}
stateMutex.Lock()
if err := txGen.Worker.UpdateCurrent(); err != nil {
utils.Logger().Warn().Err(err).Msg("(*Worker).UpdateCurrent failed")
}
stateMutex.Unlock()
readySignal <- shardID
}
} else {
continue
}
}
}
txGen.Client.UpdateBlocks = updateBlocksFunc
// Start the client server to listen to leader's message
go func() {
// wait for 3 seconds for client to send ping message to leader
// FIXME (leo) the readySignal should be set once we really sent ping message to leader
time.Sleep(1 * time.Second) // wait for nodes to be ready
readySignal <- uint32(shardID)
}()
pushLoop:
for {
t := time.Now()
utils.Logger().Debug().
Float64("running time", t.Sub(start).Seconds()).
Float64("totalTime", totalTime).
Msg("Current running time")
if !isDurationForever(totalTime) && t.Sub(start).Seconds() >= totalTime {
utils.Logger().Debug().
Int("duration", (int(t.Sub(start)))).
Time("startTime", start).
Float64("totalTime", totalTime).
Msg("Generator timer ended.")
break pushLoop
}
if shardID != 0 {
if otherHeight, flag := txGen.IsSameHeight(); flag {
if otherHeight >= 1 {
go func() {
readySignal <- uint32(shardID)
utils.Logger().Debug().Msg("Same blockchain height so readySignal generated")
time.Sleep(3 * time.Second) // wait for nodes to be ready
}()
}
}
}
select {
case shardID := <-readySignal:
lock := sync.Mutex{}
txs, err := GenerateSimulatedTransactionsAccount(uint32(shardID), txGen, setting)
if err != nil {
utils.Logger().Debug().
Err(err).
Msg("Error in Generating Txns")
}
lock.Lock()
SendTxsToShard(txGen, txs, uint32(shardID))
lock.Unlock()
case <-time.After(10 * time.Second):
utils.Logger().Warn().Msg("No new block is received so far")
}
}
}
// SendTxsToShard sends txs to shard, currently just to beacon shard
func SendTxsToShard(clientNode *node.Node, txs types.Transactions, shardID uint32) {
msg := proto_node.ConstructTransactionListMessageAccount(txs)
var err error
if shardID == 0 {
err = clientNode.GetHost().SendMessageToGroups([]nodeconfig.GroupID{nodeconfig.GroupIDBeaconClient}, p2p_host.ConstructP2pMessage(byte(0), msg))
} else {
clientGroup := nodeconfig.NewClientGroupIDByShardID(nodeconfig.ShardID(shardID))
err = clientNode.GetHost().SendMessageToGroups([]nodeconfig.GroupID{clientGroup}, p2p_host.ConstructP2pMessage(byte(0), msg))
}
if err != nil {
utils.Logger().Debug().
Err(err).
Msg("Error in Sending Txns")
}
}
// GenerateSimulatedTransactionsAccount generates simulated transaction for account model.
func GenerateSimulatedTransactionsAccount(shardID uint32, node *node.Node, setting Settings) (types.Transactions, error) {
TxnsToGenerate := setting.MaxNumTxsPerBatch // TODO: make use of settings
txs := make([]*types.Transaction, TxnsToGenerate)
rounds := (TxnsToGenerate / 100)
remainder := TxnsToGenerate % 100
for i := 0; i < 100; i++ {
baseNonce := node.Worker.GetCurrentState().GetNonce(crypto.PubkeyToAddress(node.TestBankKeys[i].PublicKey))
for j := 0; j < rounds; j++ {
randomUserAddress := crypto.PubkeyToAddress(node.TestBankKeys[rand.Intn(100)].PublicKey)
randAmount := rand.Float32()
tx, _ := types.SignTx(types.NewTransaction(baseNonce+uint64(j), randomUserAddress, shardID, big.NewInt(int64(denominations.One*randAmount)), params.TxGas, nil, nil), types.HomesteadSigner{}, node.TestBankKeys[i])
txs[100*j+i] = tx
}
if i < remainder {
randomUserAddress := crypto.PubkeyToAddress(node.TestBankKeys[rand.Intn(100)].PublicKey)
randAmount := rand.Float32()
tx, _ := types.SignTx(types.NewTransaction(baseNonce+uint64(rounds), randomUserAddress, shardID, big.NewInt(int64(denominations.One*randAmount)), params.TxGas, nil, nil), types.HomesteadSigner{}, node.TestBankKeys[i])
txs[100*rounds+i] = tx
}
}
return txs, nil
}
func isDurationForever(duration float64) bool {
return duration <= 0
}