The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

533 lines
18 KiB

package node
import (
"bytes"
"context"
"fmt"
"os"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
pb "github.com/golang/protobuf/proto"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/proto"
proto_discovery "github.com/harmony-one/harmony/api/proto/discovery"
proto_identity "github.com/harmony-one/harmony/api/proto/identity"
"github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/crypto/pki"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/p2p/host"
)
const (
// MaxNumberOfTransactionsPerBlock is the max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 8000
)
// MaybeBroadcastAsValidator returns if the node is a validator node.
func (node *Node) MaybeBroadcastAsValidator(content []byte) {
// TODO: this is tree-based broadcasting. this needs to be replaced by p2p gossiping.
if node.SelfPeer.ValidatorID > 0 && node.SelfPeer.ValidatorID <= host.MaxBroadCast {
go host.BroadcastMessageFromValidator(node.host, node.SelfPeer, node.Consensus.GetValidatorPeers(), content)
}
}
// StreamHandler handles a new incoming network message.
func (node *Node) StreamHandler(s p2p.Stream) {
defer s.Close()
// Read p2p message payload
content, err := p2p.ReadMessageContent(s)
if err != nil {
utils.GetLogInstance().Error("Read p2p data failed", "err", err, "node", node)
return
}
node.messageHandler(content, "")
}
// ReceiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages
func (node *Node) ReceiveGroupMessage() {
ctx := context.Background()
for {
if node.groupReceiver == nil {
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.groupReceiver.Receive(ctx)
if sender != node.host.GetID() {
// utils.GetLogInstance().Info("[PUBSUB]", "received group msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// ReceiveClientGroupMessage use libp2p pubsub mechanism to receive broadcast messages for client
func (node *Node) ReceiveClientGroupMessage() {
ctx := context.Background()
for {
if node.clientReceiver == nil {
// check less frequent on client messages
time.Sleep(1000 * time.Millisecond)
continue
}
msg, sender, err := node.clientReceiver.Receive(ctx)
if sender != node.host.GetID() {
utils.GetLogInstance().Info("[CLIENT]", "received group msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// messageHandler parses the message and dispatch the actions
func (node *Node) messageHandler(content []byte, sender string) {
// node.MaybeBroadcastAsValidator(content)
consensusObj := node.Consensus
msgCategory, err := proto.GetMessageCategory(content)
if err != nil {
utils.GetLogInstance().Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := proto.GetMessageType(content)
if err != nil {
utils.GetLogInstance().Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err != nil {
utils.GetLogInstance().Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case proto.Identity:
actionType := proto_identity.IDMessageType(msgType)
switch actionType {
case proto_identity.Identity:
messageType := proto_identity.MessageType(msgPayload[0])
switch messageType {
case proto_identity.Register:
fmt.Println("received a identity message")
utils.GetLogInstance().Info("NET: received message: IDENTITY/REGISTER")
default:
utils.GetLogInstance().Error("Announce message should be sent to IdentityChain")
}
}
case proto.Consensus:
msgPayload, _ := proto.GetConsensusMessagePayload(content)
if consensusObj.IsLeader {
// utils.GetLogInstance().Info("NET: Leader received consensus message")
consensusObj.ProcessMessageLeader(msgPayload)
} else {
// utils.GetLogInstance().Info("NET: Validator received consensus message")
consensusObj.ProcessMessageValidator(msgPayload)
// TODO(minhdoan): add logic to check if the current blockchain is not sync with other consensus
// we should switch to other state rather than DoingConsensus.
}
case proto.DRand:
msgPayload, _ := proto.GetDRandMessagePayload(content)
if node.DRand != nil {
if node.DRand.IsLeader {
// utils.GetLogInstance().Info("NET: DRand Leader received message")
node.DRand.ProcessMessageLeader(msgPayload)
} else {
// utils.GetLogInstance().Info("NET: DRand Validator received message")
node.DRand.ProcessMessageValidator(msgPayload)
}
}
case proto.Staking:
msgPayload, _ := proto.GetStakingMessagePayload(content)
// Only beacon leader processes staking txn
if node.Role != BeaconLeader {
return
}
node.addStakingTxnIntoPendingTxns(msgPayload)
case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto_node.Transaction:
utils.GetLogInstance().Info("NET: received message: Node/Transaction")
node.transactionMessageHandler(msgPayload)
case proto_node.Block:
utils.GetLogInstance().Info("NET: received message: Node/Block")
blockMsgType := proto_node.BlockMessageType(msgPayload[0])
switch blockMsgType {
case proto_node.Sync:
utils.GetLogInstance().Info("NET: received message: Node/Sync")
var blocks []*types.Block
err := rlp.DecodeBytes(msgPayload[1:], &blocks)
if err != nil {
utils.GetLogInstance().Error("block sync", "error", err)
} else {
// for non-beaconchain node, subscribe to beacon block broadcast
if proto_node.BlockMessageType(msgPayload[0]) == proto_node.Sync && node.Role != BeaconValidator && node.Role != BeaconLeader && node.Role != ClientNode {
for _, block := range blocks {
node.BeaconBlockChannel <- block
}
}
if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil {
node.Client.UpdateBlocks(blocks)
}
}
}
case proto_node.Control:
utils.GetLogInstance().Info("NET: received message: Node/Control")
controlType := msgPayload[0]
if proto_node.ControlMessageType(controlType) == proto_node.STOP {
utils.GetLogInstance().Debug("Stopping Node", "node", node, "numBlocks", node.blockchain.CurrentBlock().NumberU64(), "numTxsProcessed", node.countNumTransactionsInBlockchain())
var avgBlockSizeInBytes common.StorageSize
txCount := 0
blockCount := 0
avgTxSize := 0
for block := node.blockchain.CurrentBlock(); block != nil; block = node.blockchain.GetBlockByHash(block.Header().ParentHash) {
avgBlockSizeInBytes += block.Size()
txCount += len(block.Transactions())
bytes, _ := rlp.EncodeToBytes(block.Transactions())
avgTxSize += len(bytes)
blockCount++
}
if blockCount != 0 && txCount != 0 {
avgBlockSizeInBytes = avgBlockSizeInBytes / common.StorageSize(blockCount)
avgTxSize = avgTxSize / txCount
}
utils.GetLogInstance().Debug("Blockchain Report", "totalNumBlocks", blockCount, "avgBlockSizeInCurrentEpoch", avgBlockSizeInBytes, "totalNumTxs", txCount, "avgTxSzieInCurrentEpoch", avgTxSize)
os.Exit(0)
}
case proto_node.PING:
node.pingMessageHandler(msgPayload, sender)
case proto_node.PONG:
node.pongMessageHandler(msgPayload)
}
default:
utils.GetLogInstance().Error("Unknown", "MsgCategory", msgCategory)
}
}
func (node *Node) addStakingTxnIntoPendingTxns(msgPayload []byte) {
msg := &message.Message{}
err := pb.Unmarshal(msgPayload, msg)
if err == nil {
stakingRequest := msg.GetStaking()
txs := types.Transactions{}
if err = rlp.DecodeBytes(stakingRequest.Transaction, txs); err == nil {
node.addPendingTransactions(txs)
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking transaction list", "error", err)
}
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking msg payload", "error", err)
}
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto_node.TransactionMessageType(msgPayload[0])
switch txMessageType {
case proto_node.Send:
txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type
if err != nil {
utils.GetLogInstance().Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactions(txs)
case proto_node.Request:
reader := bytes.NewBuffer(msgPayload[1:])
txIDs := make(map[[32]byte]bool)
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txID [32]byte
copy(txID[:], buf)
txIDs[txID] = true
}
var txToReturn []*types.Transaction
for _, tx := range node.pendingTransactions {
if txIDs[tx.Hash()] {
txToReturn = append(txToReturn, tx)
}
}
}
}
// BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes.
// NOTE: For now, just send to the client (basically not broadcasting)
// TODO (lc): broadcast the new blocks to new nodes doing state sync
func (node *Node) BroadcastNewBlock(newBlock *types.Block) {
if node.ClientPeer != nil {
utils.GetLogInstance().Debug("Sending new block to client", "client", node.ClientPeer)
if utils.UseLibP2P {
node.host.SendMessageToGroups([]p2p.GroupID{node.MyClientGroupID}, host.ConstructP2pMessage(byte(0), proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock})))
} else {
node.SendMessage(*node.ClientPeer, proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock}))
}
}
}
// VerifyNewBlock is called by consensus participants to verify the block (account model) they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *types.Block) bool {
err := node.blockchain.ValidateNewBlock(newBlock, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey))
if err != nil {
utils.GetLogInstance().Debug("Failed verifying new block", "Error", err, "tx", newBlock.Transactions()[0])
return false
}
// TODO: verify the vrf randomness
_ = newBlock.Header().RandPreimage
err = node.blockchain.ValidateNewShardState(newBlock)
if err != nil {
utils.GetLogInstance().Debug("Failed to verify new sharding state", "err", err)
}
return true
}
// PostConsensusProcessing is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] send new block to the client
func (node *Node) PostConsensusProcessing(newBlock *types.Block) {
// if node.Role == BeaconLeader || node.Role == BeaconValidator {
// utils.GetLogInstance().Info("PostConsensusProcessing")
// node.UpdateStakingList(newBlock)
// }
if node.Consensus.IsLeader {
node.BroadcastNewBlock(newBlock)
}
node.AddNewBlock(newBlock)
// TODO: enable drand only for beacon chain
// ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch)
if node.DRand != nil {
go func() {
node.ConfirmedBlockChannel <- newBlock
}()
}
}
// AddNewBlock is usedd to add new block into the blockchain.
func (node *Node) AddNewBlock(newBlock *types.Block) {
blockNum, err := node.blockchain.InsertChain([]*types.Block{newBlock})
if err != nil {
utils.GetLogInstance().Debug("Error adding new block to blockchain", "blockNum", blockNum, "Error", err)
} else {
utils.GetLogInstance().Info("adding new block to blockchain", "blockNum", blockNum)
}
}
func (node *Node) pingMessageHandler(msgPayload []byte, sender string) int {
if sender != "" {
_, ok := node.duplicatedPing[sender]
if !ok {
node.duplicatedPing[sender] = true
} else {
// duplicated ping message return
return 0
}
}
ping, err := proto_discovery.GetPingMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Ping Message")
return -1
}
peer := new(p2p.Peer)
peer.IP = ping.Node.IP
peer.Port = ping.Node.Port
peer.PeerID = ping.Node.PeerID
peer.ValidatorID = ping.Node.ValidatorID
peer.PubKey = &bls.PublicKey{}
err = peer.PubKey.Deserialize(ping.Node.PubKey[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
return -1
}
// utils.GetLogInstance().Debug("[pingMessageHandler]", "incoming peer", peer)
// add to incoming peer list
//node.host.AddIncomingPeer(*peer)
if utils.UseLibP2P {
node.host.ConnectHostPeer(*peer)
}
if ping.Node.Role == proto_node.ClientRole {
utils.GetLogInstance().Info("Add Client Peer to Node", "Node", node.Consensus.GetNodeID(), "Client", peer)
node.ClientPeer = peer
return 0
}
// Add to Node's peer list anyway
node.AddPeers([]*p2p.Peer{peer})
// This is the old way of broadcasting pong message
if node.Consensus.IsLeader && !utils.UseLibP2P {
peers := node.Consensus.GetValidatorPeers()
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey())
buffer := pong.ConstructPongMessage()
// Send a Pong message directly to the sender
// This is necessary because the sender will need to get a ValidatorID
// Just broadcast won't work, some validators won't receive the latest
// PublicKeys as we rely on a valid ValidatorID to do broadcast.
// This is very buggy, but we will move to libp2p, hope the problem will
// be resolved then.
// However, I disable it for now as we are sending redundant PONG messages
// to all validators. This may not be needed. But it maybe add back.
// p2p.SendMessage(*peer, buffer)
// Broadcast the message to all validators, as publicKeys is updated
// FIXME: HAR-89 use a separate nodefind/neighbor message
host.BroadcastMessageFromLeader(node.GetHost(), peers, buffer, node.Consensus.OfflinePeers)
// utils.GetLogInstance().Info("PingMsgHandler send pong message")
}
return 1
}
// SendPongMessage is the a goroutine to periodcally send pong message to all peers
func (node *Node) SendPongMessage() {
tick := time.NewTicker(3 * time.Second)
numPeers := len(node.Consensus.GetValidatorPeers())
numPubKeys := len(node.Consensus.PublicKeys)
sentMessage := false
// Send Pong Message only when there is change on the number of peers
for {
select {
case <-tick.C:
peers := node.Consensus.GetValidatorPeers()
numPeersNow := len(peers)
numPubKeysNow := len(node.Consensus.PublicKeys)
// no peers, wait for another tick
if numPeersNow == 0 || numPubKeysNow == 0 {
continue
}
// new peers added
if numPubKeysNow != numPubKeys || numPeersNow != numPeers {
sentMessage = false
} else {
// stable number of peers/pubkeys, sent the pong message
if !sentMessage {
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey())
buffer := pong.ConstructPongMessage()
err := node.host.SendMessageToGroups([]p2p.GroupID{node.MyShardGroupID}, host.ConstructP2pMessage(byte(0), buffer))
if err != nil {
utils.GetLogInstance().Error("[PONG] failed to send pong message", "group", node.MyShardGroupID)
continue
} else {
utils.GetLogInstance().Info("[PONG] sent pong message to", "group", node.MyShardGroupID)
}
sentMessage = true
// stop sending ping message
node.serviceManager.TakeAction(&service.Action{Action: service.Stop, ServiceType: service.PeerDiscovery})
node.startConsensus <- struct{}{}
}
}
numPeers = numPeersNow
numPubKeys = numPubKeysNow
}
}
}
func (node *Node) pongMessageHandler(msgPayload []byte) int {
pong, err := proto_discovery.GetPongMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Pong Message")
return -1
}
peers := make([]*p2p.Peer, 0)
for _, p := range pong.Peers {
peer := new(p2p.Peer)
peer.IP = p.IP
peer.Port = p.Port
peer.ValidatorID = p.ValidatorID
peer.PeerID = p.PeerID
peer.PubKey = &bls.PublicKey{}
err = peer.PubKey.Deserialize(p.PubKey[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
continue
}
peers = append(peers, peer)
}
if len(peers) > 0 {
node.AddPeers(peers)
}
err = node.Consensus.SetLeaderPubKey(pong.LeaderPubKey)
if err != nil {
utils.GetLogInstance().Error("Unmarshal Consensus Leader PubKey Failed", "error", err)
}
err = node.DRand.SetLeaderPubKey(pong.LeaderPubKey)
if err != nil {
utils.GetLogInstance().Error("Unmarshal DRand Leader PubKey Failed", "error", err)
}
// Reset Validator PublicKeys every time we receive PONG message from Leader
// The PublicKeys has to be idential across the shard on every node
// TODO (lc): we need to handle RemovePeer situation
publicKeys := make([]*bls.PublicKey, 0)
// Create the the PubKey from the []byte sent from leader
for _, k := range pong.PubKeys {
key := bls.PublicKey{}
err = key.Deserialize(k[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed PubKeys", "error", err)
continue
}
publicKeys = append(publicKeys, &key)
}
utils.GetLogInstance().Debug("[pongMessageHandler]", "#keys", len(publicKeys), "#peers", len(peers))
if node.State == NodeWaitToJoin {
node.State = NodeReadyForConsensus
// Notify JoinShard to stop sending Ping messages
if node.StopPing != nil {
node.StopPing <- struct{}{}
}
}
// Stop discovery service after received pong message
data := make(map[string]interface{})
data["peer"] = p2p.GroupAction{Name: node.MyShardGroupID, Action: p2p.ActionPause}
node.serviceManager.TakeAction(&service.Action{Action: service.Notify, ServiceType: service.PeerDiscovery, Params: data})
return node.Consensus.UpdatePublicKeys(publicKeys) + node.DRand.UpdatePublicKeys(publicKeys)
}