The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/resharding.go

215 lines
7.4 KiB

package core
import (
"encoding/binary"
"math/rand"
"sort"
"github.com/ethereum/go-ethereum/common"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/contracts/structs"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/internal/utils/contract"
"github.com/harmony-one/harmony/core/types"
)
const (
// InitialSeed is the initial random seed, a magic number to answer everything, remove later
InitialSeed uint32 = 42
// GenesisEpoch is the number of the genesis epoch.
GenesisEpoch = 0
// FirstEpoch is the number of the first epoch.
FirstEpoch = 1
// GenesisShardNum is the number of shard at genesis
GenesisShardNum = 4
// GenesisShardSize is the size of each shard at genesis
GenesisShardSize = 50
// CuckooRate is the percentage of nodes getting reshuffled in the second step of cuckoo resharding.
CuckooRate = 0.1
)
// ShardingState is data structure hold the sharding state
type ShardingState struct {
epoch uint64 // current epoch
rnd uint64 // random seed for resharding
numShards int
shardState types.ShardState
}
// sortedCommitteeBySize will sort shards by size
// Suppose there are N shards, the first N/2 larger shards are called active committees
// the rest N/2 smaller committees are called inactive committees
// actually they are all just normal shards
// TODO: sort the committee weighted by total staking instead of shard size
func (ss *ShardingState) sortCommitteeBySize() {
sort.Slice(ss.shardState, func(i, j int) bool {
return len(ss.shardState[i].NodeList) > len(ss.shardState[j].NodeList)
})
}
// assignNewNodes add new nodes into the N/2 active committees evenly
func (ss *ShardingState) assignNewNodes(newNodeList []types.NodeID) {
ss.sortCommitteeBySize()
numActiveShards := ss.numShards / 2
Shuffle(newNodeList)
for i, nid := range newNodeList {
id := 0
if numActiveShards > 0 {
id = i % numActiveShards
}
if id < len(ss.shardState) {
ss.shardState[id].NodeList = append(ss.shardState[id].NodeList, nid)
} else {
utils.GetLogInstance().Error("assignNewNodes", "index out of range", len(ss.shardState), "id", id)
}
}
}
// cuckooResharding uses cuckoo rule to reshard X% of active committee(shards) into inactive committee(shards)
func (ss *ShardingState) cuckooResharding(percent float64) {
numActiveShards := ss.numShards / 2
kickedNodes := []types.NodeID{}
for i := range ss.shardState {
if i >= numActiveShards {
break
}
numKicked := int(percent * float64(len(ss.shardState[i].NodeList)))
if numKicked == 0 {
numKicked++ // At least kick one node out
}
length := len(ss.shardState[i].NodeList)
if length-numKicked <= 0 {
continue // Never empty a shard
}
tmp := ss.shardState[i].NodeList[length-numKicked:]
kickedNodes = append(kickedNodes, tmp...)
ss.shardState[i].NodeList = ss.shardState[i].NodeList[:length-numKicked]
}
Shuffle(kickedNodes)
numInactiveShards := ss.numShards - numActiveShards
for i, nid := range kickedNodes {
id := numActiveShards
if numInactiveShards > 0 {
id += i % numInactiveShards
}
ss.shardState[id].NodeList = append(ss.shardState[id].NodeList, nid)
}
}
// assignLeaders will first add new nodes into shards, then use cuckoo rule to reshard to get new shard state
func (ss *ShardingState) assignLeaders() {
for i := 0; i < ss.numShards; i++ {
// At genesis epoch, the shards are empty.
if len(ss.shardState[i].NodeList) > 0 {
Shuffle(ss.shardState[i].NodeList)
ss.shardState[i].Leader = ss.shardState[i].NodeList[0]
}
}
}
// Reshard will first add new nodes into shards, then use cuckoo rule to reshard to get new shard state
func (ss *ShardingState) Reshard(newNodeList []types.NodeID, percent float64) {
rand.Seed(int64(ss.rnd))
ss.sortCommitteeBySize()
// TODO: separate shuffling and leader assignment
ss.assignLeaders()
ss.assignNewNodes(newNodeList)
ss.cuckooResharding(percent)
}
// Shuffle will shuffle the list with result uniquely determined by seed, assuming there is no repeat items in the list
func Shuffle(list []types.NodeID) {
// Sort to make sure everyone will generate the same with the same rand seed.
sort.Slice(list, func(i, j int) bool {
return types.CompareNodeID(list[i], list[j]) == -1
})
rand.Shuffle(len(list), func(i, j int) {
list[i], list[j] = list[j], list[i]
})
}
// GetBlockNumberFromEpoch calculates the block number where epoch sharding information is stored
func GetBlockNumberFromEpoch(epoch uint64) uint64 {
number := epoch * uint64(BlocksPerEpoch) // currently we use the first block in each epoch
return number
}
// GetEpochFromBlockNumber calculates the epoch number the block belongs to
func GetEpochFromBlockNumber(blockNumber uint64) uint64 {
return blockNumber / uint64(BlocksPerEpoch)
}
// GetShardingStateFromBlockChain will retrieve random seed and shard map from beacon chain for given a epoch
func GetShardingStateFromBlockChain(bc *BlockChain, epoch uint64) *ShardingState {
number := GetBlockNumberFromEpoch(epoch)
shardState := bc.GetShardStateByNumber(number)
rndSeedBytes := bc.GetRandSeedByNumber(number)
rndSeed := binary.BigEndian.Uint64(rndSeedBytes[:])
return &ShardingState{epoch: epoch, rnd: rndSeed, shardState: shardState, numShards: len(shardState)}
}
// CalculateNewShardState get sharding state from previous epoch and calculate sharding state for new epoch
func CalculateNewShardState(bc *BlockChain, epoch uint64, stakeInfo *map[common.Address]*structs.StakeInfo) types.ShardState {
if epoch == GenesisEpoch {
return GetInitShardState()
}
ss := GetShardingStateFromBlockChain(bc, epoch-1)
newNodeList := ss.UpdateShardingState(stakeInfo)
utils.GetLogInstance().Info("Cuckoo Rate", "percentage", CuckooRate)
ss.Reshard(newNodeList, CuckooRate)
return ss.shardState
}
// UpdateShardingState remove the unstaked nodes and returns the newly staked node Ids.
func (ss *ShardingState) UpdateShardingState(stakeInfo *map[common.Address]*structs.StakeInfo) []types.NodeID {
oldBlsPublicKeys := make(map[types.BlsPublicKey]bool) // map of bls public keys
for _, shard := range ss.shardState {
newNodeList := shard.NodeList[:0]
for _, nodeID := range shard.NodeList {
oldBlsPublicKeys[nodeID.BlsPublicKey] = true
_, ok := (*stakeInfo)[common.HexToAddress(nodeID.EcdsaAddress)]
if ok {
newNodeList = append(newNodeList, nodeID)
} else {
// Remove the node if it's no longer staked
}
}
shard.NodeList = newNodeList
}
newAddresses := []types.NodeID{}
for addr, info := range *stakeInfo {
_, ok := oldBlsPublicKeys[info.BlsPublicKey]
if !ok {
newAddresses = append(newAddresses, types.NodeID{addr.Hex(), info.BlsPublicKey})
}
}
return newAddresses
}
// GetInitShardState returns the initial shard state at genesis.
func GetInitShardState() types.ShardState {
shardState := types.ShardState{}
for i := 0; i < GenesisShardNum; i++ {
com := types.Committee{ShardID: uint32(i)}
for j := 0; j < GenesisShardSize; j++ {
index := i*GenesisShardSize + j // The initial account to use for genesis nodes
priKey := bls.SecretKey{}
priKey.SetHexString(contract.GenesisBLSAccounts[index].Private)
pubKey := [96]byte{}
copy(pubKey[:], priKey.GetPublicKey().Serialize()[:])
// TODO: directly read address for bls too
curNodeID := types.NodeID{contract.GenesisAccounts[index].Address, pubKey}
if j == 0 {
com.Leader = curNodeID
}
com.NodeList = append(com.NodeList, curNodeID)
}
shardState = append(shardState, com)
}
return shardState
}