The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/crypto/vrf/p256/p256.go

292 lines
8.0 KiB

// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package p256 implements a verifiable random function using curve p256.
package p256
// Discrete Log based VRF from Appendix A of CONIKS:
// http://www.jbonneau.com/doc/MBBFF15-coniks.pdf
// based on "Unique Ring Signatures, a Practical Construction"
// http://fc13.ifca.ai/proc/5-1.pdf
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"crypto/x509"
"encoding/binary"
"encoding/pem"
"errors"
"math/big"
"github.com/woop-chain/woop/crypto/vrf"
)
var (
curve = elliptic.P256()
params = curve.Params()
// ErrPointNotOnCurve occurs when a public key is not on the curve.
ErrPointNotOnCurve = errors.New("point is not on the P256 curve")
// ErrWrongKeyType occurs when a key is not an ECDSA key.
ErrWrongKeyType = errors.New("not an ECDSA key")
// ErrNoPEMFound occurs when attempting to parse a non PEM data structure.
ErrNoPEMFound = errors.New("no PEM block found")
// ErrInvalidVRF occurs when the VRF does not validate.
ErrInvalidVRF = errors.New("invalid VRF proof")
)
// PublicKey holds a public VRF key.
type PublicKey struct {
*ecdsa.PublicKey
}
// PrivateKey holds a private VRF key.
type PrivateKey struct {
*ecdsa.PrivateKey
}
// Serialize serialize the public key into bytes
func (pk *PublicKey) Serialize() []byte {
return append(pk.PublicKey.X.Bytes(), pk.PublicKey.Y.Bytes()...)
}
// Deserialize de-serialize bytes into public key
func (pk *PublicKey) Deserialize(data []byte) {
pk.X.SetBytes(data[:len(data)/2])
pk.Y.SetBytes(data[len(data)/2:])
}
// GenerateKey generates a fresh keypair for this VRF
func GenerateKey() (vrf.PrivateKey, vrf.PublicKey) {
key, err := ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
return nil, nil
}
return &PrivateKey{PrivateKey: key}, &PublicKey{PublicKey: &key.PublicKey}
}
// H1 hashes m to a curve point
func H1(m []byte) (x, y *big.Int) {
h := sha512.New()
var i uint32
byteLen := (params.BitSize + 7) >> 3
for x == nil && i < 100 {
// TODO: Use a NIST specified DRBG.
h.Reset()
binary.Write(h, binary.BigEndian, i)
h.Write(m)
r := []byte{2} // Set point encoding to "compressed", y=0.
r = h.Sum(r)
x, y = Unmarshal(curve, r[:byteLen+1])
i++
}
return
}
var one = big.NewInt(1)
// H2 hashes to an integer [1,N-1]
func H2(m []byte) *big.Int {
// NIST SP 800-90A § A.5.1: Simple discard method.
byteLen := (params.BitSize + 7) >> 3
h := sha512.New()
for i := uint32(0); ; i++ {
// TODO: Use a NIST specified DRBG.
h.Reset()
binary.Write(h, binary.BigEndian, i)
h.Write(m)
b := h.Sum(nil)
k := new(big.Int).SetBytes(b[:byteLen])
if k.Cmp(new(big.Int).Sub(params.N, one)) == -1 {
return k.Add(k, one)
}
}
}
// Evaluate returns the verifiable unpredictable function evaluated at m
func (k PrivateKey) Evaluate(m []byte) (index [32]byte, proof []byte) {
nilIndex := [32]byte{}
// Prover chooses r <-- [1,N-1]
r, _, _, err := elliptic.GenerateKey(curve, rand.Reader)
if err != nil {
return nilIndex, nil
}
ri := new(big.Int).SetBytes(r)
// H = H1(m)
Hx, Hy := H1(m)
// VRF_k(m) = [k]H
sHx, sHy := params.ScalarMult(Hx, Hy, k.D.Bytes())
vrf := elliptic.Marshal(curve, sHx, sHy) // 65 bytes.
// G is the base point
// s = H2(G, H, [k]G, VRF, [r]G, [r]H)
rGx, rGy := params.ScalarBaseMult(r)
rHx, rHy := params.ScalarMult(Hx, Hy, r)
var b bytes.Buffer
b.Write(elliptic.Marshal(curve, params.Gx, params.Gy))
b.Write(elliptic.Marshal(curve, Hx, Hy))
b.Write(elliptic.Marshal(curve, k.PublicKey.X, k.PublicKey.Y))
b.Write(vrf)
b.Write(elliptic.Marshal(curve, rGx, rGy))
b.Write(elliptic.Marshal(curve, rHx, rHy))
s := H2(b.Bytes())
// t = r−s*k mod N
t := new(big.Int).Sub(ri, new(big.Int).Mul(s, k.D))
t.Mod(t, params.N)
// Index = H(vrf)
index = sha256.Sum256(vrf)
// Write s, t, and vrf to a proof blob. Also write leading zeros before s and t
// if needed.
var buf bytes.Buffer
buf.Write(make([]byte, 32-len(s.Bytes())))
buf.Write(s.Bytes())
buf.Write(make([]byte, 32-len(t.Bytes())))
buf.Write(t.Bytes())
buf.Write(vrf)
return index, buf.Bytes()
}
// ProofToHash asserts that proof is correct for m and outputs index.
func (pk *PublicKey) ProofToHash(m, proof []byte) (index [32]byte, err error) {
nilIndex := [32]byte{}
// verifier checks that s == H2(m, [t]G + [s]([k]G), [t]H1(m) + [s]VRF_k(m))
if got, want := len(proof), 64+65; got != want {
return nilIndex, ErrInvalidVRF
}
// Parse proof into s, t, and vrf.
s := proof[0:32]
t := proof[32:64]
vrf := proof[64 : 64+65]
uHx, uHy := elliptic.Unmarshal(curve, vrf)
if uHx == nil {
return nilIndex, ErrInvalidVRF
}
// [t]G + [s]([k]G) = [t+ks]G
tGx, tGy := params.ScalarBaseMult(t)
ksGx, ksGy := params.ScalarMult(pk.X, pk.Y, s)
tksGx, tksGy := params.Add(tGx, tGy, ksGx, ksGy)
// H = H1(m)
// [t]H + [s]VRF = [t+ks]H
Hx, Hy := H1(m)
tHx, tHy := params.ScalarMult(Hx, Hy, t)
sHx, sHy := params.ScalarMult(uHx, uHy, s)
tksHx, tksHy := params.Add(tHx, tHy, sHx, sHy)
// H2(G, H, [k]G, VRF, [t]G + [s]([k]G), [t]H + [s]VRF)
// = H2(G, H, [k]G, VRF, [t+ks]G, [t+ks]H)
// = H2(G, H, [k]G, VRF, [r]G, [r]H)
var b bytes.Buffer
b.Write(elliptic.Marshal(curve, params.Gx, params.Gy))
b.Write(elliptic.Marshal(curve, Hx, Hy))
b.Write(elliptic.Marshal(curve, pk.X, pk.Y))
b.Write(vrf)
b.Write(elliptic.Marshal(curve, tksGx, tksGy))
b.Write(elliptic.Marshal(curve, tksHx, tksHy))
h2 := H2(b.Bytes())
// Left pad h2 with zeros if needed. This will ensure that h2 is padded
// the same way s is.
var buf bytes.Buffer
buf.Write(make([]byte, 32-len(h2.Bytes())))
buf.Write(h2.Bytes())
if !hmac.Equal(s, buf.Bytes()) {
return nilIndex, ErrInvalidVRF
}
return sha256.Sum256(vrf), nil
}
// NewVRFSigner creates a signer object from a private key.
func NewVRFSigner(key *ecdsa.PrivateKey) (vrf.PrivateKey, error) {
if *(key.Params()) != *curve.Params() {
return nil, ErrPointNotOnCurve
}
if !curve.IsOnCurve(key.X, key.Y) {
return nil, ErrPointNotOnCurve
}
return &PrivateKey{PrivateKey: key}, nil
}
// Public returns the corresponding public key as bytes.
func (k PrivateKey) Public() crypto.PublicKey {
return &k.PublicKey
}
// NewVRFVerifier creates a verifier object from a public key.
func NewVRFVerifier(pubkey *ecdsa.PublicKey) (vrf.PublicKey, error) {
if *(pubkey.Params()) != *curve.Params() {
return nil, ErrPointNotOnCurve
}
if !curve.IsOnCurve(pubkey.X, pubkey.Y) {
return nil, ErrPointNotOnCurve
}
return &PublicKey{PublicKey: pubkey}, nil
}
// NewVRFSignerFromPEM creates a vrf private key from a PEM data structure.
func NewVRFSignerFromPEM(b []byte) (vrf.PrivateKey, error) {
p, _ := pem.Decode(b)
if p == nil {
return nil, ErrNoPEMFound
}
return NewVRFSignerFromRawKey(p.Bytes)
}
// NewVRFSignerFromRawKey returns the private key from a raw private key bytes.
func NewVRFSignerFromRawKey(b []byte) (vrf.PrivateKey, error) {
k, err := x509.ParseECPrivateKey(b)
if err != nil {
return nil, err
}
return NewVRFSigner(k)
}
// NewVRFVerifierFromPEM creates a vrf public key from a PEM data structure.
func NewVRFVerifierFromPEM(b []byte) (vrf.PublicKey, error) {
p, _ := pem.Decode(b)
if p == nil {
return nil, ErrNoPEMFound
}
return NewVRFVerifierFromRawKey(p.Bytes)
}
// NewVRFVerifierFromRawKey returns the public key from a raw public key bytes.
func NewVRFVerifierFromRawKey(b []byte) (vrf.PublicKey, error) {
k, err := x509.ParsePKIXPublicKey(b)
if err != nil {
return nil, err
}
pk, ok := k.(*ecdsa.PublicKey)
if !ok {
return nil, ErrWrongKeyType
}
return NewVRFVerifier(pk)
}