The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

752 lines
26 KiB

package node
import (
"bytes"
"context"
"encoding/gob"
"encoding/hex"
"fmt"
"io/ioutil"
"math"
"os"
"os/exec"
"strconv"
"sync/atomic"
"syscall"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/harmony-one/harmony/core"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
pb "github.com/golang/protobuf/proto"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/proto"
proto_discovery "github.com/harmony-one/harmony/api/proto/discovery"
"github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/crypto/pki"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/p2p/host"
)
const (
// MaxNumberOfTransactionsPerBlock is the max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 8000
consensusTimeout = 5 * time.Second
)
// ReceiveGlobalMessage use libp2p pubsub mechanism to receive global broadcast messages
func (node *Node) ReceiveGlobalMessage() {
ctx := context.Background()
for {
if node.globalGroupReceiver == nil {
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.globalGroupReceiver.Receive(ctx)
if sender != node.host.GetID() {
utils.GetLogInstance().Info("[PUBSUB]", "received global msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// ReceiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages
func (node *Node) ReceiveGroupMessage() {
ctx := context.Background()
for {
if node.shardGroupReceiver == nil {
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.shardGroupReceiver.Receive(ctx)
if sender != node.host.GetID() {
// utils.GetLogInstance().Info("[PUBSUB]", "received group msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// ReceiveClientGroupMessage use libp2p pubsub mechanism to receive broadcast messages for client
func (node *Node) ReceiveClientGroupMessage() {
ctx := context.Background()
for {
if node.clientReceiver == nil {
// check less frequent on client messages
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.clientReceiver.Receive(ctx)
if sender != node.host.GetID() {
utils.GetLogInstance().Info("[CLIENT]", "received group msg", len(msg), "sender", sender, "error", err)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// messageHandler parses the message and dispatch the actions
func (node *Node) messageHandler(content []byte, sender string) {
msgCategory, err := proto.GetMessageCategory(content)
if err != nil {
utils.GetLogInstance().Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := proto.GetMessageType(content)
if err != nil {
utils.GetLogInstance().Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err != nil {
utils.GetLogInstance().Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case proto.Consensus:
msgPayload, _ := proto.GetConsensusMessagePayload(content)
node.ConsensusMessageHandler(msgPayload)
case proto.DRand:
msgPayload, _ := proto.GetDRandMessagePayload(content)
if node.DRand != nil {
if node.DRand.IsLeader {
node.DRand.ProcessMessageLeader(msgPayload)
} else {
node.DRand.ProcessMessageValidator(msgPayload)
}
}
case proto.Staking:
utils.GetLogInstance().Info("NET: Received staking message")
msgPayload, _ := proto.GetStakingMessagePayload(content)
// Only beacon leader processes staking txn
if node.NodeConfig.Role() != nodeconfig.BeaconLeader {
return
}
node.processStakingMessage(msgPayload)
case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto_node.Transaction:
utils.GetLogInstance().Info("NET: received message: Node/Transaction")
node.transactionMessageHandler(msgPayload)
case proto_node.Block:
utils.GetLogInstance().Info("NET: received message: Node/Block")
blockMsgType := proto_node.BlockMessageType(msgPayload[0])
switch blockMsgType {
case proto_node.Sync:
utils.GetLogInstance().Info("NET: received message: Node/Sync")
var blocks []*types.Block
err := rlp.DecodeBytes(msgPayload[1:], &blocks)
if err != nil {
utils.GetLogInstance().Error("block sync", "error", err)
} else {
// for non-beaconchain node, subscribe to beacon block broadcast
role := node.NodeConfig.Role()
if proto_node.BlockMessageType(msgPayload[0]) == proto_node.Sync && (role == nodeconfig.ShardValidator || role == nodeconfig.ShardLeader || role == nodeconfig.NewNode) {
utils.GetLogInstance().Info("Block being handled by block channel", "self peer", node.SelfPeer, "block", blocks[0].NumberU64())
for _, block := range blocks {
node.BeaconBlockChannel <- block
}
}
if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil {
utils.GetLogInstance().Info("Block being handled by client by", "self peer", node.SelfPeer)
node.Client.UpdateBlocks(blocks)
}
}
}
case proto_node.Control:
utils.GetLogInstance().Info("NET: received message: Node/Control")
controlType := msgPayload[0]
if proto_node.ControlMessageType(controlType) == proto_node.STOP {
utils.GetLogInstance().Debug("Stopping Node", "numBlocks", node.blockchain.CurrentBlock().NumberU64(), "numTxsProcessed", node.countNumTransactionsInBlockchain())
var avgBlockSizeInBytes common.StorageSize
txCount := 0
blockCount := 0
avgTxSize := 0
for block := node.blockchain.CurrentBlock(); block != nil; block = node.blockchain.GetBlockByHash(block.Header().ParentHash) {
avgBlockSizeInBytes += block.Size()
txCount += len(block.Transactions())
bytes, _ := rlp.EncodeToBytes(block.Transactions())
avgTxSize += len(bytes)
blockCount++
}
if blockCount != 0 && txCount != 0 {
avgBlockSizeInBytes = avgBlockSizeInBytes / common.StorageSize(blockCount)
avgTxSize = avgTxSize / txCount
}
utils.GetLogInstance().Debug("Blockchain Report", "totalNumBlocks", blockCount, "avgBlockSizeInCurrentEpoch", avgBlockSizeInBytes, "totalNumTxs", txCount, "avgTxSzieInCurrentEpoch", avgTxSize)
os.Exit(0)
}
case proto_node.PING:
node.pingMessageHandler(msgPayload, sender)
case proto_node.PONG:
node.pongMessageHandler(msgPayload)
case proto_node.ShardState:
node.epochShardStateMessageHandler(msgPayload)
}
default:
utils.GetLogInstance().Error("Unknown", "MsgCategory", msgCategory)
}
}
func (node *Node) processStakingMessage(msgPayload []byte) {
msg := &message.Message{}
err := pb.Unmarshal(msgPayload, msg)
if err == nil {
stakingRequest := msg.GetStaking()
txs := types.Transactions{}
if err = rlp.DecodeBytes(stakingRequest.Transaction, &txs); err == nil {
utils.GetLogInstance().Info("Successfully added staking transaction to pending list.")
node.addPendingTransactions(txs)
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking transaction list", "error", err)
}
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking msg payload", "error", err)
}
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto_node.TransactionMessageType(msgPayload[0])
switch txMessageType {
case proto_node.Send:
txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type
if err != nil {
utils.GetLogInstance().Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactions(txs)
case proto_node.Request:
reader := bytes.NewBuffer(msgPayload[1:])
txIDs := make(map[[32]byte]bool)
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txID [32]byte
copy(txID[:], buf)
txIDs[txID] = true
}
var txToReturn []*types.Transaction
for _, tx := range node.pendingTransactions {
if txIDs[tx.Hash()] {
txToReturn = append(txToReturn, tx)
}
}
}
}
// BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes.
// NOTE: For now, just send to the client (basically not broadcasting)
// TODO (lc): broadcast the new blocks to new nodes doing state sync
func (node *Node) BroadcastNewBlock(newBlock *types.Block) {
if node.ClientPeer != nil {
utils.GetLogInstance().Debug("Sending new block to client", "client", node.ClientPeer)
node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetClientGroupID()}, host.ConstructP2pMessage(byte(0), proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock})))
}
}
// VerifyNewBlock is called by consensus participants to verify the block (account model) they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *types.Block) bool {
err := node.blockchain.ValidateNewBlock(newBlock, pki.GetAddressFromPublicKey(node.SelfPeer.ConsensusPubKey))
if err != nil {
utils.GetLogInstance().Debug("Failed verifying new block", "Error", err, "tx", newBlock.Transactions()[0])
return false
}
// TODO: verify the vrf randomness
_ = newBlock.Header().RandPreimage
err = node.blockchain.ValidateNewShardState(newBlock, &node.CurrentStakes)
if err != nil {
utils.GetLogInstance().Debug("Failed to verify new sharding state", "err", err)
}
return true
}
// PostConsensusProcessing is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] send new block to the client
func (node *Node) PostConsensusProcessing(newBlock *types.Block) {
if node.Consensus.IsLeader {
node.BroadcastNewBlock(newBlock)
} else {
utils.GetLogInstance().Info("BINGO !!! Reached Consensus", "ConsensusID", node.Consensus.GetConsensusID())
}
node.AddNewBlock(newBlock)
// Update contract deployer's nonce so default contract like faucet can issue transaction with current nonce
nonce := node.GetNonceOfAddress(crypto.PubkeyToAddress(node.ContractDeployerKey.PublicKey))
atomic.StoreUint64(&node.ContractDeployerCurrentNonce, nonce)
for _, tx := range newBlock.Transactions() {
msg, err := tx.AsMessage(types.HomesteadSigner{})
if err != nil {
utils.GetLogInstance().Error("Error when parsing tx into message")
}
if _, ok := node.AddressNonce.Load(msg.From()); ok {
nonce := node.GetNonceOfAddress(msg.From())
node.AddressNonce.Store(msg.From(), nonce)
}
}
if node.Consensus.ShardID == 0 {
// Update contract deployer's nonce so default contract like faucet can issue transaction with current nonce
nonce := node.GetNonceOfAddress(crypto.PubkeyToAddress(node.ContractDeployerKey.PublicKey))
atomic.StoreUint64(&node.ContractDeployerCurrentNonce, nonce)
// TODO: enable drand only for beacon chain
// ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch)
if node.DRand != nil {
go func() {
node.ConfirmedBlockChannel <- newBlock
}()
}
// ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch)
if node.DRand != nil {
go func() {
node.ConfirmedBlockChannel <- newBlock
}()
}
// TODO: update staking information once per epoch.
node.UpdateStakingList(node.QueryStakeInfo())
node.printStakingList()
if core.IsEpochBlock(newBlock) {
shardState := node.blockchain.StoreNewShardState(newBlock, &node.CurrentStakes)
if shardState != nil {
if node.Consensus.IsLeader {
epochShardState := types.EpochShardState{Epoch: core.GetEpochFromBlockNumber(newBlock.NumberU64()), ShardState: shardState}
epochShardStateMessage := proto_node.ConstructEpochShardStateMessage(epochShardState)
// Broadcast new shard state
err := node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetClientGroupID()}, host.ConstructP2pMessage(byte(0), epochShardStateMessage))
if err != nil {
utils.GetLogInstance().Error("[Resharding] failed to broadcast shard state message", "group", node.NodeConfig.GetClientGroupID())
} else {
utils.GetLogInstance().Info("[Resharding] broadcasted shard state message to", "group", node.NodeConfig.GetClientGroupID())
}
}
node.processEpochShardState(&types.EpochShardState{Epoch: core.GetEpochFromBlockNumber(newBlock.NumberU64()), ShardState: shardState})
}
}
}
}
// AddNewBlock is usedd to add new block into the blockchain.
func (node *Node) AddNewBlock(newBlock *types.Block) {
blockNum, err := node.blockchain.InsertChain([]*types.Block{newBlock})
if err != nil {
utils.GetLogInstance().Debug("Error adding new block to blockchain", "blockNum", blockNum, "Error", err)
} else {
utils.GetLogInstance().Info("adding new block to blockchain", "blockNum", blockNum, "by node", node.SelfPeer)
}
}
func (node *Node) pingMessageHandler(msgPayload []byte, sender string) int {
utils.GetLogInstance().Error("Got Ping Message")
if sender != "" {
_, ok := node.duplicatedPing.LoadOrStore(sender, true)
if ok {
// duplicated ping message return
return 0
}
}
ping, err := proto_discovery.GetPingMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Ping Message", "error", err)
return -1
}
peer := new(p2p.Peer)
peer.IP = ping.Node.IP
peer.Port = ping.Node.Port
peer.PeerID = ping.Node.PeerID
peer.ConsensusPubKey = nil
if ping.Node.PubKey != nil {
peer.ConsensusPubKey = &bls.PublicKey{}
if err := peer.ConsensusPubKey.Deserialize(ping.Node.PubKey[:]); err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
return -1
}
}
// utils.GetLogInstance().Debug("[pingMessageHandler]", "incoming peer", peer)
// add to incoming peer list
//node.host.AddIncomingPeer(*peer)
node.host.ConnectHostPeer(*peer)
if ping.Node.Role == proto_node.ClientRole {
utils.GetLogInstance().Info("Add Client Peer to Node", "Address", node.Consensus.GetSelfAddress(), "Client", peer)
node.ClientPeer = peer
} else {
node.AddPeers([]*p2p.Peer{peer})
utils.GetLogInstance().Info("Add Peer to Node", "Address", node.Consensus.GetSelfAddress(), "Peer", peer, "# Peers", len(node.Consensus.PublicKeys))
}
return 1
}
// SendPongMessage is the a goroutine to periodcally send pong message to all peers
func (node *Node) SendPongMessage() {
tick := time.NewTicker(2 * time.Second)
tick2 := time.NewTicker(120 * time.Second)
numPeers := len(node.Consensus.GetValidatorPeers())
numPubKeys := len(node.Consensus.PublicKeys)
sentMessage := false
firstTime := true
// Send Pong Message only when there is change on the number of peers
for {
select {
case <-tick.C:
peers := node.Consensus.GetValidatorPeers()
numPeersNow := len(peers)
numPubKeysNow := len(node.Consensus.PublicKeys)
// no peers, wait for another tick
if numPubKeysNow == 0 {
utils.GetLogInstance().Info("[PONG] no peers, continue", "numPeers", numPeers, "numPeersNow", numPeersNow)
continue
}
// new peers added
if numPubKeysNow != numPubKeys || numPeersNow != numPeers {
utils.GetLogInstance().Info("[PONG] different number of peers", "numPeers", numPeers, "numPeersNow", numPeersNow)
sentMessage = false
} else {
// stable number of peers/pubkeys, sent the pong message
// also make sure number of peers is greater than the minimal required number
if !sentMessage && numPubKeysNow >= node.Consensus.MinPeers {
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey(), node.Consensus.ShardID)
buffer := pong.ConstructPongMessage()
err := node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetShardGroupID()}, host.ConstructP2pMessage(byte(0), buffer))
if err != nil {
utils.GetLogInstance().Error("[PONG] failed to send pong message", "group", node.NodeConfig.GetShardGroupID())
continue
} else {
utils.GetLogInstance().Info("[PONG] sent pong message to", "group", node.NodeConfig.GetShardGroupID(), "# nodes", numPeersNow)
}
sentMessage = true
// wait a bit until all validators received pong message
time.Sleep(200 * time.Millisecond)
// only need to notify consensus leader once to start the consensus
if firstTime {
// Leader stops sending ping message
time.Sleep(5 * time.Second)
node.serviceManager.TakeAction(&service.Action{Action: service.Stop, ServiceType: service.PeerDiscovery})
node.startConsensus <- struct{}{}
firstTime = false
}
}
}
numPeers = numPeersNow
numPubKeys = numPubKeysNow
case <-tick2.C:
// send pong message regularly to make sure new node received all the public keys
// also nodes offline/online will receive the public keys
peers := node.Consensus.GetValidatorPeers()
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey(), node.Consensus.ShardID)
buffer := pong.ConstructPongMessage()
err := node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetShardGroupID()}, host.ConstructP2pMessage(byte(0), buffer))
if err != nil {
utils.GetLogInstance().Error("[PONG] failed to send regular pong message", "group", node.NodeConfig.GetShardGroupID())
continue
} else {
utils.GetLogInstance().Info("[PONG] sent regular pong message to", "group", node.NodeConfig.GetShardGroupID(), "# nodes", len(peers))
}
}
}
}
func (node *Node) pongMessageHandler(msgPayload []byte) int {
utils.GetLogInstance().Error("Got Pong Message")
pong, err := proto_discovery.GetPongMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Pong Message", "error", err)
return -1
}
if pong.ShardID != node.Consensus.ShardID {
utils.GetLogInstance().Error("Received Pong message for the wrong shard", "receivedShardID", pong.ShardID)
return 0
}
// set the leader pub key is the first thing to do
// otherwise, we may not be able to validate the consensus messages received
// which will result in first consensus timeout
// TODO: remove this after fully migrating to beacon chain-based committee membership
//err = node.Consensus.SetLeaderPubKey(pong.LeaderPubKey)
//if err != nil {
// utils.GetLogInstance().Error("Unmarshal Consensus Leader PubKey Failed", "error", err)
//} else {
// utils.GetLogInstance().Info("Set Consensus Leader PubKey", "key", node.Consensus.GetLeaderPubKey())
//}
//err = node.DRand.SetLeaderPubKey(pong.LeaderPubKey)
//if err != nil {
// utils.GetLogInstance().Error("Unmarshal DRand Leader PubKey Failed", "error", err)
//} else {
// utils.GetLogInstance().Info("Set DRand Leader PubKey", "key", node.Consensus.GetLeaderPubKey())
//}
peers := make([]*p2p.Peer, 0)
for _, p := range pong.Peers {
peer := new(p2p.Peer)
peer.IP = p.IP
peer.Port = p.Port
peer.PeerID = p.PeerID
peer.ConsensusPubKey = &bls.PublicKey{}
err = peer.ConsensusPubKey.Deserialize(p.PubKey[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
continue
}
peers = append(peers, peer)
}
if len(peers) > 0 {
node.AddPeers(peers)
}
// Reset Validator PublicKeys every time we receive PONG message from Leader
// The PublicKeys has to be idential across the shard on every node
// TODO (lc): we need to handle RemovePeer situation
publicKeys := make([]*bls.PublicKey, 0)
// Create the the PubKey from the []byte sent from leader
for _, k := range pong.PubKeys {
key := bls.PublicKey{}
err = key.Deserialize(k[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed PubKeys", "error", err)
continue
}
publicKeys = append(publicKeys, &key)
}
utils.GetLogInstance().Debug("[pongMessageHandler]", "#keys", len(publicKeys), "#peers", len(peers))
if node.State == NodeWaitToJoin {
node.State = NodeReadyForConsensus
}
// Stop discovery service after received pong message
data := make(map[string]interface{})
data["peer"] = p2p.GroupAction{Name: node.NodeConfig.GetShardGroupID(), Action: p2p.ActionPause}
node.serviceManager.TakeAction(&service.Action{Action: service.Notify, ServiceType: service.PeerDiscovery, Params: data})
// TODO: remove this after fully migrating to beacon chain-based committee membership
return 0
}
func (node *Node) epochShardStateMessageHandler(msgPayload []byte) int {
utils.GetLogInstance().Error("[Received new shard state]")
epochShardState, err := proto_node.DeserializeEpochShardStateFromMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get shard state Message", "error", err)
return -1
}
if (node.Consensus != nil && node.Consensus.ShardID != 0) || node.NodeConfig.Role() == nodeconfig.NewNode {
node.processEpochShardState(epochShardState)
}
return 0
}
func (node *Node) processEpochShardState(epochShardState *types.EpochShardState) {
shardState := epochShardState.ShardState
epoch := epochShardState.Epoch
for _, c := range shardState {
utils.GetLogInstance().Debug("new shard information", "shardID", c.ShardID, "NodeList", c.NodeList)
}
myShardID := uint32(math.MaxUint32)
isNextLeader := false
myBlsPubKey := node.Consensus.PubKey.Serialize()
myShardState := types.Committee{}
for _, shard := range shardState {
for _, nodeID := range shard.NodeList {
if bytes.Compare(nodeID.BlsPublicKey[:], myBlsPubKey) == 0 {
myShardID = shard.ShardID
isNextLeader = shard.Leader == nodeID
myShardState = shard
}
}
}
if myShardID != uint32(math.MaxUint32) {
// Update public keys
ss := myShardState
publicKeys := []*bls.PublicKey{}
for _, nodeID := range ss.NodeList {
key := &bls.PublicKey{}
err := key.Deserialize(nodeID.BlsPublicKey[:])
if err != nil {
utils.GetLogInstance().Error("Failed to deserialize BLS public key in shard state", "error", err)
}
publicKeys = append(publicKeys, key)
}
node.Consensus.UpdatePublicKeys(publicKeys)
node.DRand.UpdatePublicKeys(publicKeys)
aboutLeader := ""
if node.Consensus.IsLeader {
aboutLeader = "I am not leader anymore"
if isNextLeader {
aboutLeader = "I am still leader"
}
} else {
aboutLeader = "I am still validator"
if isNextLeader {
aboutLeader = "I become the leader"
}
}
if node.blockchain.ShardID() == myShardID {
utils.GetLogInstance().Info(fmt.Sprintf("[Resharded][epoch:%d] I stay at shard %d, %s", epoch, myShardID, aboutLeader), "BlsPubKey", hex.EncodeToString(myBlsPubKey))
} else {
utils.GetLogInstance().Info(fmt.Sprintf("[Resharded][epoch:%d] I got resharded to shard %d from shard %d, %s", epoch, myShardID, node.blockchain.ShardID(), aboutLeader), "BlsPubKey", hex.EncodeToString(myBlsPubKey))
node.storeEpochShardState(epochShardState)
execFile, err := getBinaryPath()
if err != nil {
utils.GetLogInstance().Crit("Failed to get program path when restarting program", "error", err, "file", execFile)
}
args := getRestartArguments(myShardID)
utils.GetLogInstance().Info("Restarting program", "args", args, "env", os.Environ())
err = syscall.Exec(execFile, args, os.Environ())
if err != nil {
utils.GetLogInstance().Crit("Failed to restart program after resharding", "error", err)
}
}
} else {
utils.GetLogInstance().Info(fmt.Sprintf("[Resharded][epoch:%d] Somehow I got kicked out. Exiting", epoch), "BlsPubKey", hex.EncodeToString(myBlsPubKey))
os.Exit(8) // 8 represents it's a loop and the program restart itself
}
}
func getRestartArguments(myShardID uint32) []string {
args := os.Args
hasShardID := false
shardIDFlag := "-shard_id"
// newNodeFlag := "-is_newnode"
for i, arg := range args {
if arg == shardIDFlag {
if i+1 < len(args) {
args[i+1] = strconv.Itoa(int(myShardID))
} else {
args = append(args, strconv.Itoa(int(myShardID)))
}
hasShardID = true
}
// TODO: enable this
//if arg == newNodeFlag {
// args[i] = "" // remove new node flag
//}
}
if !hasShardID {
args = append(args, shardIDFlag)
args = append(args, strconv.Itoa(int(myShardID)))
}
return args
}
// Gets the path of this currently running binary program.
func getBinaryPath() (argv0 string, err error) {
argv0, err = exec.LookPath(os.Args[0])
if nil != err {
return
}
if _, err = os.Stat(argv0); nil != err {
return
}
return
}
// Stores the epoch shard state into local file
// TODO: think about storing it into level db.
func (node *Node) storeEpochShardState(epochShardState *types.EpochShardState) {
byteBuffer := bytes.NewBuffer([]byte{})
encoder := gob.NewEncoder(byteBuffer)
err := encoder.Encode(epochShardState)
if err != nil {
utils.GetLogInstance().Error("[Resharded] Failed to encode epoch shard state", "error", err)
}
err = ioutil.WriteFile("./epoch_shard_state"+node.SelfPeer.IP+node.SelfPeer.Port, byteBuffer.Bytes(), 0644)
if err != nil {
utils.GetLogInstance().Error("[Resharded] Failed to store epoch shard state in local file", "error", err)
}
}
func (node *Node) retrieveEpochShardState() (*types.EpochShardState, error) {
b, err := ioutil.ReadFile("./epoch_shard_state" + node.SelfPeer.IP + node.SelfPeer.Port)
if err != nil {
utils.GetLogInstance().Error("[Resharded] Failed to retrieve epoch shard state", "error", err)
}
epochShardState := new(types.EpochShardState)
r := bytes.NewBuffer(b)
decoder := gob.NewDecoder(r)
err = decoder.Decode(epochShardState)
if err != nil {
return nil, fmt.Errorf("Decode local epoch shard state error")
}
return epochShardState, nil
}
// ConsensusMessageHandler passes received message in node_handler to consensus
func (node *Node) ConsensusMessageHandler(msgPayload []byte) {
if node.Consensus.ConsensusVersion == "v1" {
if node.Consensus.IsLeader {
node.Consensus.ProcessMessageLeader(msgPayload)
} else {
node.Consensus.ProcessMessageValidator(msgPayload)
}
return
}
if node.Consensus.ConsensusVersion == "v2" {
select {
case node.Consensus.MsgChan <- msgPayload:
case <-time.After(consensusTimeout):
utils.GetLogInstance().Debug("[Consensus] ConsensusMessageHandler timeout", "duration", consensusTimeout)
}
return
}
}