The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/client/txgen/main.go

401 lines
13 KiB

package main
import (
"encoding/binary"
"encoding/hex"
"flag"
"fmt"
"math/rand"
"os"
"path"
"runtime"
"sync"
"time"
"github.com/simple-rules/harmony-benchmark/blockchain"
"github.com/simple-rules/harmony-benchmark/client"
client_config "github.com/simple-rules/harmony-benchmark/client/config"
"github.com/simple-rules/harmony-benchmark/consensus"
"github.com/simple-rules/harmony-benchmark/crypto/pki"
"github.com/simple-rules/harmony-benchmark/log"
"github.com/simple-rules/harmony-benchmark/node"
"github.com/simple-rules/harmony-benchmark/p2p"
proto_node "github.com/simple-rules/harmony-benchmark/proto/node"
)
var (
version string
builtBy string
builtAt string
commit string
)
type txGenSettings struct {
numOfAddress int
crossShard bool
maxNumTxsPerBatch int
crossShardRatio int
}
var (
utxoPoolMutex sync.Mutex
setting txGenSettings
)
type TxInfo struct {
// Global Input
shardID int
dataNodes []*node.Node
// Temp Input
id [32]byte
index uint32
value int
address [20]byte
// Output
txs []*blockchain.Transaction
crossTxs []*blockchain.Transaction
txCount int
}
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
// The transactions are generated by going through the existing utxos and
// randomly select a subset of them as the input for each new transaction. The output
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
//
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
// Similarly, generate another utxo output in that second shard.
//
// NOTE: the genesis block should contain N coinbase transactions which add
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
//
// Params:
// subsetId - the which subset of the utxo to work on (used to select addresses)
// shardID - the shardID for current shard
// dataNodes - nodes containing utxopools of all shards
// Returns:
// all single-shard txs
// all cross-shard txs
func generateSimulatedTransactions(subsetId, numSubset int, shardID int, dataNodes []*node.Node) ([]*blockchain.Transaction, []*blockchain.Transaction) {
/*
UTXO map structure:
address - [
txID1 - [
outputIndex1 - value1
outputIndex2 - value2
]
txID2 - [
outputIndex1 - value1
outputIndex2 - value2
]
]
*/
txInfo := TxInfo{}
txInfo.shardID = shardID
txInfo.dataNodes = dataNodes
txInfo.txCount = 0
UTXOLOOP:
// Loop over all addresses
for address, txMap := range dataNodes[shardID].UtxoPool.UtxoMap {
if int(binary.BigEndian.Uint32(address[:]))%numSubset == subsetId%numSubset { // Work on one subset of utxo at a time
txInfo.address = address
// Loop over all txIDs for the address
for txIDStr, utxoMap := range txMap {
// Parse TxId
id, err := hex.DecodeString(txIDStr)
if err != nil {
continue
}
copy(txInfo.id[:], id[:])
// Loop over all utxos for the txID
utxoSize := len(utxoMap)
batchSize := utxoSize / numSubset
i := subsetId % numSubset
counter := 0
for index, value := range utxoMap {
counter++
if batchSize*i < counter && counter > batchSize*(i+1) {
continue
}
txInfo.index = index
txInfo.value = value
randNum := rand.Intn(100)
subsetRatio := 100 // / numSubset
if randNum < subsetRatio { // Sample based on batch size
if setting.crossShard && randNum < subsetRatio*setting.crossShardRatio/100 { // 30% cross shard transactions: add another txinput from another shard
generateCrossShardTx(&txInfo)
} else {
generateSingleShardTx(&txInfo)
}
if txInfo.txCount >= setting.maxNumTxsPerBatch {
break UTXOLOOP
}
}
}
}
}
}
log.Info("UTXO CLIENT", "numUtxo", dataNodes[shardID].UtxoPool.CountNumOfUtxos(), "shardID", shardID)
log.Debug("[Generator] generated transations", "single-shard", len(txInfo.txs), "cross-shard", len(txInfo.crossTxs))
return txInfo.txs, txInfo.crossTxs
}
func generateCrossShardTx(txInfo *TxInfo) {
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
crossShardID := nodeShardID
// a random shard to spend money to
for true {
crossShardID = uint32(rand.Intn(len(txInfo.dataNodes)))
if crossShardID != nodeShardID {
break
}
}
//crossShardNode := txInfo.dataNodes[crossShardID]
//crossShardUtxosMap := crossShardNode.UtxoPool.UtxoMap[txInfo.address]
//
//// Get the cross shard utxo from another shard
//var crossTxin *blockchain.TXInput
//crossUtxoValue := 0
//// Loop over utxos for the same address from the other shard and use the first utxo as the second cross tx input
//for crossTxIdStr, crossShardUtxos := range crossShardUtxosMap {
// // Parse TxId
// id, err := hex.DecodeString(crossTxIdStr)
// if err != nil {
// continue
// }
// crossTxId := [32]byte{}
// copy(crossTxId[:], id[:])
//
// for crossShardIndex, crossShardValue := range crossShardUtxos {
// crossUtxoValue = crossShardValue
// crossTxin = blockchain.NewTXInput(blockchain.NewOutPoint(&crossTxId, crossShardIndex), txInfo.address, crossShardID)
// break
// }
// if crossTxin != nil {
// break
// }
//}
// Add the utxo from current shard
txIn := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
txInputs := []blockchain.TXInput{*txIn}
// Add the utxo from the other shard, if any
//if crossTxin != nil { // This means the ratio of cross shard tx could be lower than 1/3
// txInputs = append(txInputs, *crossTxin)
//}
// Spend the utxo from the current shard to a random address in [0 - N)
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: crossShardID}
txOutputs := []blockchain.TXOutput{txout}
// Spend the utxo from the other shard, if any, to a random address in [0 - N)
//if crossTxin != nil {
// crossTxout := blockchain.TXOutput{Amount: crossUtxoValue, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: crossShardID}
// txOutputs = append(txOutputs, crossTxout)
//}
// Construct the new transaction
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: txInputs, TxOutput: txOutputs, Proofs: nil}
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
if ok {
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)))
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
} else {
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
return
}
txInfo.crossTxs = append(txInfo.crossTxs, &tx)
txInfo.txCount++
}
func generateSingleShardTx(txInfo *TxInfo) {
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
// Add the utxo as new tx input
txin := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
// Spend the utxo to a random address in [0 - N)
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: nodeShardID}
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: []blockchain.TXInput{*txin}, TxOutput: []blockchain.TXOutput{txout}, Proofs: nil}
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
if ok {
tx.PublicKey = pki.GetBytesFromPublicKey(pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)))
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
} else {
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
return
}
txInfo.txs = append(txInfo.txs, &tx)
txInfo.txCount++
}
func printVersion(me string) {
fmt.Fprintf(os.Stderr, "Harmony (C) 2018. %v, version %v-%v (%v %v)\n", path.Base(me), version, commit, builtBy, builtAt)
os.Exit(0)
}
func main() {
configFile := flag.String("config_file", "local_config.txt", "file containing all ip addresses and config")
maxNumTxsPerBatch := flag.Int("max_num_txs_per_batch", 20000, "number of transactions to send per message")
logFolder := flag.String("log_folder", "latest", "the folder collecting the logs of this execution")
numSubset := flag.Int("numSubset", 3, "the number of subsets of utxos to process separately")
duration := flag.Int("duration", 120, "duration of the tx generation in second. If it's negative, the experiment runs forever.")
versionFlag := flag.Bool("version", false, "Output version info")
crossShardRatio := flag.Int("cross_shard_ratio", 30, "The percentage of cross shard transactions.")
flag.Parse()
if *versionFlag {
printVersion(os.Args[0])
}
// Add GOMAXPROCS to achieve max performance.
runtime.GOMAXPROCS(1024)
// Read the configs
config := client_config.NewConfig()
config.ReadConfigFile(*configFile)
shardIDLeaderMap := config.GetShardIDToLeaderMap()
setting.numOfAddress = 10000
// Do cross shard tx if there are more than one shard
setting.crossShard = len(shardIDLeaderMap) > 1
setting.maxNumTxsPerBatch = *maxNumTxsPerBatch
setting.crossShardRatio = *crossShardRatio
// TODO(Richard): refactor this chuck to a single method
// Setup a logger to stdout and log file.
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder)
h := log.MultiHandler(
log.StdoutHandler,
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
)
log.Root().SetHandler(h)
// Nodes containing utxopools to mirror the shards' data in the network
nodes := []*node.Node{}
for shardID, _ := range shardIDLeaderMap {
node := node.New(&consensus.Consensus{ShardID: shardID}, nil)
// Assign many fake addresses so we have enough address to play with at first
node.AddTestingAddresses(setting.numOfAddress)
nodes = append(nodes, node)
}
// Client/txgenerator server node setup
clientPort := config.GetClientPort()
consensusObj := consensus.NewConsensus("0", clientPort, "0", nil, p2p.Peer{})
clientNode := node.New(consensusObj, nil)
if clientPort != "" {
clientNode.Client = client.NewClient(&shardIDLeaderMap)
// This func is used to update the client's utxopool when new blocks are received from the leaders
updateBlocksFunc := func(blocks []*blockchain.Block) {
log.Debug("Received new block from leader", "len", len(blocks))
for _, block := range blocks {
for _, node := range nodes {
if node.Consensus.ShardID == block.ShardID {
log.Debug("Adding block from leader", "shardID", block.ShardID)
// Add it to blockchain
node.AddNewBlock(block)
utxoPoolMutex.Lock()
node.UpdateUtxoAndState(block)
utxoPoolMutex.Unlock()
} else {
continue
}
}
}
}
clientNode.Client.UpdateBlocks = updateBlocksFunc
// Start the client server to listen to leader's message
go func() {
clientNode.StartServer(clientPort)
}()
}
// Transaction generation process
time.Sleep(10 * time.Second) // wait for nodes to be ready
start := time.Now()
totalTime := float64(*duration)
client.InitLookUpIntPriKeyMap()
subsetCounter := 0
for true {
t := time.Now()
if totalTime > 0 && t.Sub(start).Seconds() >= totalTime {
log.Debug("Generator timer ended.", "duration", (int(t.Sub(start))), "startTime", start, "totalTime", totalTime)
break
}
shardIDTxsMap := make(map[uint32][]*blockchain.Transaction)
lock := sync.Mutex{}
var wg sync.WaitGroup
wg.Add(len(shardIDLeaderMap))
utxoPoolMutex.Lock()
log.Warn("STARTING TX GEN", "gomaxprocs", runtime.GOMAXPROCS(0))
for shardID, _ := range shardIDLeaderMap { // Generate simulated transactions
go func(shardID uint32) {
txs, crossTxs := generateSimulatedTransactions(subsetCounter, *numSubset, int(shardID), nodes)
// Put cross shard tx into a pending list waiting for proofs from leaders
if clientPort != "" {
clientNode.Client.PendingCrossTxsMutex.Lock()
for _, tx := range crossTxs {
clientNode.Client.PendingCrossTxs[tx.ID] = tx
}
clientNode.Client.PendingCrossTxsMutex.Unlock()
}
lock.Lock()
// Put txs into corresponding shards
shardIDTxsMap[shardID] = append(shardIDTxsMap[shardID], txs...)
for _, crossTx := range crossTxs {
for curShardID, _ := range client.GetInputShardIDsOfCrossShardTx(crossTx) {
shardIDTxsMap[curShardID] = append(shardIDTxsMap[curShardID], crossTx)
}
}
lock.Unlock()
wg.Done()
}(shardID)
}
wg.Wait()
utxoPoolMutex.Unlock()
lock.Lock()
for shardID, txs := range shardIDTxsMap { // Send the txs to corresponding shards
go func(shardID uint32, txs []*blockchain.Transaction) {
SendTxsToLeader(shardIDLeaderMap[shardID], txs)
}(shardID, txs)
}
lock.Unlock()
subsetCounter++
time.Sleep(10000 * time.Millisecond)
}
// Send a stop message to stop the nodes at the end
msg := proto_node.ConstructStopMessage()
peers := append(config.GetValidators(), clientNode.Client.GetLeaders()...)
p2p.BroadcastMessage(peers, msg)
}
func SendTxsToLeader(leader p2p.Peer, txs []*blockchain.Transaction) {
log.Debug("[Generator] Sending txs to...", "leader", leader, "numTxs", len(txs))
msg := proto_node.ConstructTransactionListMessage(txs)
p2p.SendMessage(leader, msg)
}