The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node.go

605 lines
21 KiB

package node
import (
"crypto/ecdsa"
"fmt"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/harmony-one/harmony/accounts"
"github.com/harmony-one/harmony/api/client"
clientService "github.com/harmony-one/harmony/api/client/service"
msg_pb "github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/api/service/syncing"
"github.com/harmony-one/harmony/api/service/syncing/downloader"
"github.com/harmony-one/harmony/block"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/consensus/reward"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/drand"
"github.com/harmony-one/harmony/internal/chain"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/shardchain"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/msgq"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/p2p"
p2p_host "github.com/harmony-one/harmony/p2p/host"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
)
// State is a state of a node.
type State byte
// All constants except the NodeLeader below are for validators only.
const (
NodeInit State = iota // Node just started, before contacting BeaconChain
NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard
NodeNotInSync // Node out of sync, might be just joined Shard or offline for a period of time
NodeOffline // Node is offline
NodeReadyForConsensus // Node is ready for doing consensus
NodeDoingConsensus // Node is already doing consensus
NodeLeader // Node is the leader of some shard.
)
const (
// NumTryBroadCast is the number of times trying to broadcast
NumTryBroadCast = 3
// ClientRxQueueSize is the number of client messages to queue before tail-dropping.
ClientRxQueueSize = 16384
// ShardRxQueueSize is the number of shard messages to queue before tail-dropping.
ShardRxQueueSize = 16384
// GlobalRxQueueSize is the number of global messages to queue before tail-dropping.
GlobalRxQueueSize = 16384
// ClientRxWorkers is the number of concurrent client message handlers.
ClientRxWorkers = 8
// ShardRxWorkers is the number of concurrent shard message handlers.
ShardRxWorkers = 32
// GlobalRxWorkers is the number of concurrent global message handlers.
GlobalRxWorkers = 32
)
func (state State) String() string {
switch state {
case NodeInit:
return "NodeInit"
case NodeWaitToJoin:
return "NodeWaitToJoin"
case NodeNotInSync:
return "NodeNotInSync"
case NodeOffline:
return "NodeOffline"
case NodeReadyForConsensus:
return "NodeReadyForConsensus"
case NodeDoingConsensus:
return "NodeDoingConsensus"
case NodeLeader:
return "NodeLeader"
}
return "Unknown"
}
const (
maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync
broadcastTimeout int64 = 60 * 1000000000 // 1 mins
//SyncIDLength is the length of bytes for syncID
SyncIDLength = 20
)
// use to push new block to outofsync node
type syncConfig struct {
timestamp int64
client *downloader.Client
}
// Node represents a protocol-participating node in the network
type Node struct {
Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits)
BlockChannel chan *types.Block // The channel to send newly proposed blocks
ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks
BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes
DRand *drand.DRand // The instance for distributed randomness protocol
pendingCrossLinks []*block.Header
pendingClMutex sync.Mutex
pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus
pendingCXMutex sync.Mutex
// Shard databases
shardChains shardchain.Collection
Client *client.Client // The presence of a client object means this node will also act as a client
SelfPeer p2p.Peer // TODO(minhdoan): it could be duplicated with Self below whose is Alok work.
BCPeers []p2p.Peer // list of Beacon Chain Peers. This is needed by all nodes.
// TODO: Neighbors should store only neighbor nodes in the same shard
Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
numPeers int // Number of Peers
State State // State of the Node
stateMutex sync.Mutex // mutex for change node state
// BeaconNeighbors store only neighbor nodes in the beacon chain shard
BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
TxPool *core.TxPool
CxPool *core.CxPool // pool for missing cross shard receipts resend
pendingStakingTransactions map[common.Hash]*staking.StakingTransaction // All the staking transactions received but not yet processed for Consensus
pendingStakingTxMutex sync.Mutex
Worker *worker.Worker
BeaconWorker *worker.Worker // worker for beacon chain
// Client server (for wallet requests)
clientServer *clientService.Server
// Syncing component.
syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers
downloaderServer *downloader.Server
stateSync *syncing.StateSync
beaconSync *syncing.StateSync
peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing
SyncingPeerProvider SyncingPeerProvider
// syncing frequency parameters
syncFreq int
beaconSyncFreq int
// The p2p host used to send/receive p2p messages
host p2p.Host
// Incoming messages to process.
clientRxQueue *msgq.Queue
shardRxQueue *msgq.Queue
globalRxQueue *msgq.Queue
// Service manager.
serviceManager *service.Manager
// Demo account.
DemoContractAddress common.Address
LotteryManagerPrivateKey *ecdsa.PrivateKey
// Puzzle account.
PuzzleContractAddress common.Address
PuzzleManagerPrivateKey *ecdsa.PrivateKey
// For test only; TODO ek – remove this
TestBankKeys []*ecdsa.PrivateKey
ContractDeployerKey *ecdsa.PrivateKey
ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block
ContractAddresses []common.Address
// For puzzle contracts
AddressNonce sync.Map
// Shard group Message Receiver
shardGroupReceiver p2p.GroupReceiver
// Global group Message Receiver, communicate with beacon chain, or cross-shard TX
globalGroupReceiver p2p.GroupReceiver
// Client Message Receiver to handle light client messages
// Beacon leader needs to use this receiver to talk to new node
clientReceiver p2p.GroupReceiver
// Duplicated Ping Message Received
duplicatedPing sync.Map
// Channel to notify consensus service to really start consensus
startConsensus chan struct{}
// node configuration, including group ID, shard ID, etc
NodeConfig *nodeconfig.ConfigType
// Chain configuration.
chainConfig params.ChainConfig
// map of service type to its message channel.
serviceMessageChan map[service.Type]chan *msg_pb.Message
accountManager *accounts.Manager
// Next shard state
nextShardState struct {
// The received master shard state
master *shard.EpochShardState
// When for a leader to propose the next shard state,
// or for a validator to wait for a proposal before view change.
// TODO ek – replace with retry-based logic instead of delay
proposeTime time.Time
}
isFirstTime bool // the node was started with a fresh database
// How long in second the leader needs to wait to propose a new block.
BlockPeriod time.Duration
// last time consensus reached for metrics
lastConsensusTime int64
}
// Blockchain returns the blockchain for the node's current shard.
func (node *Node) Blockchain() *core.BlockChain {
shardID := node.NodeConfig.ShardID
bc, err := node.shardChains.ShardChain(shardID)
if err != nil {
utils.Logger().Error().
Uint32("shardID", shardID).
Err(err).
Msg("cannot get shard chain")
}
return bc
}
// Beaconchain returns the beaconchain from node.
func (node *Node) Beaconchain() *core.BlockChain {
bc, err := node.shardChains.ShardChain(0)
if err != nil {
utils.Logger().Error().Err(err).Msg("cannot get beaconchain")
}
return bc
}
func (node *Node) tryBroadcast(tx *types.Transaction) {
msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx})
shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID()))
utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast")
for attempt := 0; attempt < NumTryBroadCast; attempt++ {
if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID}, p2p_host.ConstructP2pMessage(byte(0), msg)); err != nil && attempt < NumTryBroadCast {
utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx")
} else {
break
}
}
}
// Add new transactions to the pending transaction list.
func (node *Node) addPendingTransactions(newTxs types.Transactions) {
node.TxPool.AddRemotes(newTxs)
pendingCount, queueCount := node.TxPool.Stats()
utils.Logger().Info().Int("length of newTxs", len(newTxs)).Int("totalPending", pendingCount).Int("totalQueued", queueCount).Msg("Got more transactions")
}
// Add new staking transactions to the pending staking transaction list.
func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) {
txPoolLimit := 1000 // TODO: incorporate staking txn into TxPool
node.pendingStakingTxMutex.Lock()
for _, tx := range newStakingTxs {
if _, ok := node.pendingStakingTransactions[tx.Hash()]; !ok {
node.pendingStakingTransactions[tx.Hash()] = tx
}
if len(node.pendingStakingTransactions) > txPoolLimit {
break
}
}
utils.Logger().Info().Int("length of newStakingTxs", len(newStakingTxs)).Int("totalPending", len(node.pendingStakingTransactions)).Msg("Got more staking transactions")
node.pendingStakingTxMutex.Unlock()
}
// AddPendingStakingTransaction staking transactions
func (node *Node) AddPendingStakingTransaction(
newStakingTx *staking.StakingTransaction) {
node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx})
}
// AddPendingTransaction adds one new transaction to the pending transaction list.
// This is only called from SDK.
func (node *Node) AddPendingTransaction(newTx *types.Transaction) {
if node.Consensus.IsLeader() && newTx.ShardID() == node.NodeConfig.ShardID {
node.addPendingTransactions(types.Transactions{newTx})
} else {
utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx")
node.tryBroadcast(newTx)
}
}
// AddPendingReceipts adds one receipt message to pending list.
func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) {
node.pendingCXMutex.Lock()
defer node.pendingCXMutex.Unlock()
if receipts.ContainsEmptyField() {
utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("CXReceiptsProof contains empty field")
return
}
blockNum := receipts.Header.Number().Uint64()
shardID := receipts.Header.ShardID()
key := utils.GetPendingCXKey(shardID, blockNum)
if _, ok := node.pendingCXReceipts[key]; ok {
utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("Already Got Same Receipt message")
return
}
node.pendingCXReceipts[key] = receipts
utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("Got ONE more receipt message")
}
func (node *Node) startRxPipeline(
receiver p2p.GroupReceiver, queue *msgq.Queue, numWorkers int,
) {
// consumers
for i := 0; i < numWorkers; i++ {
go queue.HandleMessages(node)
}
// provider
go node.receiveGroupMessage(receiver, queue)
}
// StartServer starts a server and process the requests by a handler.
func (node *Node) StartServer() {
// client messages are sent by clients, like txgen, wallet
node.startRxPipeline(node.clientReceiver, node.clientRxQueue, ClientRxWorkers)
// start the goroutine to receive group message
node.startRxPipeline(node.shardGroupReceiver, node.shardRxQueue, ShardRxWorkers)
// start the goroutine to receive global message, used for cross-shard TX
// FIXME (leo): we use beacon client topic as the global topic for now
node.startRxPipeline(node.globalGroupReceiver, node.globalRxQueue, GlobalRxWorkers)
select {}
}
// Count the total number of transactions in the blockchain
// Currently used for stats reporting purpose
func (node *Node) countNumTransactionsInBlockchain() int {
count := 0
for block := node.Blockchain().CurrentBlock(); block != nil; block = node.Blockchain().GetBlockByHash(block.Header().ParentHash()) {
count += len(block.Transactions())
}
return count
}
// GetSyncID returns the syncID of this node
func (node *Node) GetSyncID() [SyncIDLength]byte {
return node.syncID
}
// New creates a new node.
func New(host p2p.Host, consensusObj *consensus.Consensus,
chainDBFactory shardchain.DBFactory, isArchival bool) *Node {
node := Node{}
node.syncFreq = SyncFrequency
node.beaconSyncFreq = SyncFrequency
// Get the node config that's created in the harmony.go program.
if consensusObj != nil {
node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID)
} else {
node.NodeConfig = nodeconfig.GetDefaultConfig()
}
copy(node.syncID[:], GenerateRandomString(SyncIDLength))
if host != nil {
node.host = host
node.SelfPeer = host.GetSelfPeer()
}
chainConfig := *params.TestnetChainConfig
switch node.NodeConfig.GetNetworkType() {
case nodeconfig.Mainnet:
chainConfig = *params.MainnetChainConfig
case nodeconfig.Pangaea:
chainConfig = *params.PangaeaChainConfig
}
node.chainConfig = chainConfig
collection := shardchain.NewCollection(
chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig,
)
if isArchival {
collection.DisableCache()
}
node.shardChains = collection
if host != nil && consensusObj != nil {
// Consensus and associated channel to communicate blocks
node.Consensus = consensusObj
// Load the chains.
blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh
beaconChain := node.Beaconchain()
node.BlockChannel = make(chan *types.Block)
node.ConfirmedBlockChannel = make(chan *types.Block)
node.BeaconBlockChannel = make(chan *types.Block)
node.TxPool = core.NewTxPool(core.DefaultTxPoolConfig, node.Blockchain().Config(), blockchain)
node.CxPool = core.NewCxPool(core.CxPoolSize)
node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine)
if node.Blockchain().ShardID() != shard.BeaconChainShardID {
node.BeaconWorker = worker.New(node.Beaconchain().Config(), beaconChain, chain.Engine)
}
node.pendingCXReceipts = make(map[string]*types.CXReceiptsProof)
node.pendingStakingTransactions = make(map[common.Hash]*staking.StakingTransaction)
node.Consensus.VerifiedNewBlock = make(chan *types.Block)
chain.Engine.SetRewarder(node.Consensus.Decider.(reward.Distributor))
chain.Engine.SetSlasher(node.Consensus.Decider.(slash.Slasher))
// the sequence number is the next block number to be added in consensus protocol, which is always one more than current chain header block
node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1)
// Add Faucet contract to all shards, so that on testnet, we can demo wallet in explorer
if node.NodeConfig.GetNetworkType() != nodeconfig.Mainnet {
if node.isFirstTime {
// Setup one time smart contracts
node.AddFaucetContractToPendingTransactions()
} else {
node.AddContractKeyAndAddress(scFaucet)
}
// Create test keys. Genesis will later need this.
var err error
node.TestBankKeys, err = CreateTestBankKeys(TestAccountNumber)
if err != nil {
utils.Logger().Error().Err(err).Msg("Error while creating test keys")
}
}
}
utils.Logger().Info().
Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)).
Msg("Genesis block hash")
node.clientRxQueue = msgq.New(ClientRxQueueSize)
node.shardRxQueue = msgq.New(ShardRxQueueSize)
node.globalRxQueue = msgq.New(GlobalRxQueueSize)
// Setup initial state of syncing.
node.peerRegistrationRecord = make(map[string]*syncConfig)
node.startConsensus = make(chan struct{})
go node.bootstrapConsensus()
return &node
}
// InitConsensusWithValidators initialize shard state from latest epoch and update committee pub
// keys for consensus and drand
func (node *Node) InitConsensusWithValidators() (err error) {
if node.Consensus == nil {
utils.Logger().Error().Msg("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID")
return ctxerror.New("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID")
}
shardID := node.Consensus.ShardID
blockNum := node.Blockchain().CurrentBlock().NumberU64()
node.Consensus.SetMode(consensus.Listening)
epoch := shard.Schedule.CalcEpochNumber(blockNum)
utils.Logger().Info().
Uint64("blockNum", blockNum).
Uint32("shardID", shardID).
Uint64("epoch", epoch.Uint64()).
Msg("[InitConsensusWithValidators] Try To Get PublicKeys")
shardState, err := committee.WithStakingEnabled.Compute(
epoch, node.Consensus.ChainReader,
)
pubKeys := committee.WithStakingEnabled.GetCommitteePublicKeys(
shardState,
)[int(shardID)]
if len(pubKeys) == 0 {
utils.Logger().Error().
Uint32("shardID", shardID).
Uint64("blockNum", blockNum).
Msg("[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys")
return ctxerror.New(
"[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys",
"shardID", shardID,
"blockNum", blockNum)
}
for i := range pubKeys {
if pubKeys[i].IsEqual(node.Consensus.PubKey) {
utils.Logger().Info().
Uint64("blockNum", blockNum).
Int("numPubKeys", len(pubKeys)).
Msg("[InitConsensusWithValidators] Successfully updated public keys")
node.Consensus.UpdatePublicKeys(pubKeys)
node.Consensus.SetMode(consensus.Normal)
return nil
}
}
// TODO: Disable drand. Currently drand isn't functioning but we want to compeletely turn it off for full protection.
// node.DRand.UpdatePublicKeys(pubKeys)
return nil
}
// AddPeers adds neighbors nodes
func (node *Node) AddPeers(peers []*p2p.Peer) int {
count := 0
for _, p := range peers {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.Neighbors.LoadOrStore(key, *p)
if !ok {
// !ok means new peer is stored
count++
node.host.AddPeer(p)
node.numPeers++
continue
}
}
return count
}
// AddBeaconPeer adds beacon chain neighbors nodes
// Return false means new neighbor peer was added
// Return true means redundant neighbor peer wasn't added
func (node *Node) AddBeaconPeer(p *p2p.Peer) bool {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.BeaconNeighbors.LoadOrStore(key, *p)
return ok
}
// isBeacon = true if the node is beacon node
// isClient = true if the node light client(wallet)
func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer) {
chanPeer := make(chan p2p.Peer)
nodeConfig := service.NodeConfig{
PushgatewayIP: node.NodeConfig.GetPushgatewayIP(),
PushgatewayPort: node.NodeConfig.GetPushgatewayPort(),
IsClient: node.NodeConfig.IsClient(),
Beacon: nodeconfig.NewGroupIDByShardID(0),
ShardGroupID: node.NodeConfig.GetShardGroupID(),
Actions: make(map[nodeconfig.GroupID]nodeconfig.ActionType),
}
if nodeConfig.IsClient {
nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(0)] = nodeconfig.ActionStart
} else {
nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart
}
var err error
node.shardGroupReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetShardGroupID())
if err != nil {
utils.Logger().Error().Err(err).Msg("Failed to create shard receiver")
}
node.globalGroupReceiver, err = node.host.GroupReceiver(nodeconfig.NewClientGroupIDByShardID(0))
if err != nil {
utils.Logger().Error().Err(err).Msg("Failed to create global receiver")
}
node.clientReceiver, err = node.host.GroupReceiver(node.NodeConfig.GetClientGroupID())
if err != nil {
utils.Logger().Error().Err(err).Msg("Failed to create client receiver")
}
return nodeConfig, chanPeer
}
// AccountManager ...
func (node *Node) AccountManager() *accounts.Manager {
return node.accountManager
}
// ServiceManager ...
func (node *Node) ServiceManager() *service.Manager {
return node.serviceManager
}
// SetSyncFreq sets the syncing frequency in the loop
func (node *Node) SetSyncFreq(syncFreq int) {
node.syncFreq = syncFreq
}
// SetBeaconSyncFreq sets the syncing frequency in the loop
func (node *Node) SetBeaconSyncFreq(syncFreq int) {
node.beaconSyncFreq = syncFreq
}