The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

648 lines
22 KiB

package node
import (
"bufio"
"bytes"
"encoding/gob"
"fmt"
"net"
"os"
"strconv"
"time"
"github.com/dedis/kyber"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/blockchain"
"github.com/harmony-one/harmony/core/types"
hmy_crypto "github.com/harmony-one/harmony/crypto"
"github.com/harmony-one/harmony/crypto/pki"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/proto"
"github.com/harmony-one/harmony/proto/client"
"github.com/harmony-one/harmony/proto/consensus"
proto_identity "github.com/harmony-one/harmony/proto/identity"
proto_node "github.com/harmony-one/harmony/proto/node"
)
const (
// MinNumberOfTransactionsPerBlock is the min number of transaction per a block.
MinNumberOfTransactionsPerBlock = 6000
// MaxNumberOfTransactionsPerBlock is the max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 8000
// NumBlocksBeforeStateBlock is the number of blocks allowed before generating state block
NumBlocksBeforeStateBlock = 1000
)
// MaybeBroadcastAsValidator returns if the node is a validator node.
func (node *Node) MaybeBroadcastAsValidator(content []byte) {
if node.SelfPeer.ValidatorID > 0 && node.SelfPeer.ValidatorID <= p2p.MaxBroadCast {
go p2p.BroadcastMessageFromValidator(node.SelfPeer, node.Consensus.GetValidatorPeers(), content)
}
}
// NodeHandler handles a new incoming connection.
func (node *Node) NodeHandler(conn net.Conn) {
defer conn.Close()
// Read p2p message payload
content, err := p2p.ReadMessageContent(conn)
if err != nil {
node.log.Error("Read p2p data failed", "err", err, "node", node)
return
}
// TODO: this is tree broadcasting. this needs to be removed later. Actually the whole logic needs to be replaced by p2p.
node.MaybeBroadcastAsValidator(content)
consensusObj := node.Consensus
msgCategory, err := proto.GetMessageCategory(content)
if err != nil {
node.log.Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := proto.GetMessageType(content)
if err != nil {
node.log.Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err != nil {
node.log.Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case proto.Identity:
actionType := proto_identity.IdentityMessageType(msgType)
switch actionType {
case proto_identity.Identity:
messageType := proto_identity.MessageType(msgPayload[0])
switch messageType {
case proto_identity.Register:
fmt.Println("received a identity message")
// TODO(ak): fix it.
// node.processPOWMessage(msgPayload)
node.log.Info("NET: received message: IDENTITY/REGISTER")
default:
node.log.Error("Announce message should be sent to IdentityChain")
}
}
case proto.Consensus:
actionType := consensus.ConsensusMessageType(msgType)
switch actionType {
case consensus.Consensus:
if consensusObj.IsLeader {
node.log.Info("NET: received message: Consensus/Leader")
consensusObj.ProcessMessageLeader(msgPayload)
} else {
node.log.Info("NET: received message: Consensus/Validator")
consensusObj.ProcessMessageValidator(msgPayload)
}
}
case proto.Node:
actionType := proto_node.NodeMessageType(msgType)
switch actionType {
case proto_node.Transaction:
node.log.Info("NET: received message: Node/Transaction")
node.transactionMessageHandler(msgPayload)
case proto_node.Block:
node.log.Info("NET: received message: Node/Block")
blockMsgType := proto_node.BlockMessageType(msgPayload[0])
switch blockMsgType {
case proto_node.Sync:
decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Sync messge type
blocks := new([]*blockchain.Block)
decoder.Decode(blocks)
if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil {
node.Client.UpdateBlocks(*blocks)
}
}
case proto_node.BlockchainSync:
node.log.Info("NET: received message: Node/BlockchainSync")
node.handleBlockchainSync(msgPayload, conn)
case proto_node.Client:
node.log.Info("NET: received message: Node/Client")
clientMsgType := proto_node.ClientMessageType(msgPayload[0])
switch clientMsgType {
case proto_node.LookupUtxo:
decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the LookupUtxo messge type
fetchUtxoMessage := new(proto_node.FetchUtxoMessage)
decoder.Decode(fetchUtxoMessage)
utxoMap := node.UtxoPool.GetUtxoMapByAddresses(fetchUtxoMessage.Addresses)
p2p.SendMessage(fetchUtxoMessage.Sender, client.ConstructFetchUtxoResponseMessage(&utxoMap, node.UtxoPool.ShardID))
}
case proto_node.Control:
node.log.Info("NET: received message: Node/Control")
controlType := msgPayload[0]
if proto_node.ControlMessageType(controlType) == proto_node.STOP {
if node.Chain == nil {
node.log.Debug("Stopping Node", "node", node, "numBlocks", len(node.blockchain.Blocks), "numTxsProcessed", node.countNumTransactionsInBlockchain())
sizeInBytes := node.UtxoPool.GetSizeInByteOfUtxoMap()
node.log.Debug("UtxoPool Report", "numEntries", len(node.UtxoPool.UtxoMap), "sizeInBytes", sizeInBytes)
avgBlockSizeInBytes := 0
txCount := 0
blockCount := 0
totalTxCount := 0
totalBlockCount := 0
avgTxSize := 0
for _, block := range node.blockchain.Blocks {
if block.IsStateBlock() {
totalTxCount += int(block.State.NumTransactions)
totalBlockCount += int(block.State.NumBlocks)
} else {
byteBuffer := bytes.NewBuffer([]byte{})
encoder := gob.NewEncoder(byteBuffer)
encoder.Encode(block)
avgBlockSizeInBytes += len(byteBuffer.Bytes())
txCount += len(block.Transactions)
blockCount++
totalTxCount += len(block.TransactionIds)
totalBlockCount++
byteBuffer = bytes.NewBuffer([]byte{})
encoder = gob.NewEncoder(byteBuffer)
encoder.Encode(block.Transactions)
avgTxSize += len(byteBuffer.Bytes())
}
}
if blockCount != 0 {
avgBlockSizeInBytes = avgBlockSizeInBytes / blockCount
avgTxSize = avgTxSize / txCount
}
node.log.Debug("Blockchain Report", "totalNumBlocks", totalBlockCount, "avgBlockSizeInCurrentEpoch", avgBlockSizeInBytes, "totalNumTxs", totalTxCount, "avgTxSzieInCurrentEpoch", avgTxSize)
} else {
node.log.Debug("Stopping Node (Account Model)", "node", node, "CurBlockNum", node.Chain.CurrentHeader().Number, "numTxsProcessed", node.countNumTransactionsInBlockchainAccount())
}
os.Exit(0)
}
case proto_node.PING:
node.pingMessageHandler(msgPayload)
case proto_node.PONG:
node.pongMessageHandler(msgPayload)
}
case proto.Client:
actionType := client.ClientMessageType(msgType)
node.log.Info("NET: received message: Client/Transaction")
switch actionType {
case client.Transaction:
if node.Client != nil {
node.Client.TransactionMessageHandler(msgPayload)
}
}
default:
node.log.Error("Unknown", "MsgCateory:", msgCategory)
}
}
// Refactor by moving this code into a sync package.
func (node *Node) handleBlockchainSync(payload []byte, conn net.Conn) {
// TODO(minhdoan): Looking to removing this.
w := bufio.NewWriter(conn)
FOR_LOOP:
for {
syncMsgType := proto_node.BlockchainSyncMessageType(payload[0])
switch syncMsgType {
case proto_node.GetBlock:
block := node.blockchain.FindBlock(payload[1:33])
w.Write(block.Serialize())
w.Flush()
case proto_node.GetLastBlockHashes:
blockchainSyncMessage := proto_node.BlockchainSyncMessage{
BlockHeight: len(node.blockchain.Blocks),
BlockHashes: node.blockchain.GetBlockHashes(),
}
w.Write(proto_node.SerializeBlockchainSyncMessage(&blockchainSyncMessage))
w.Flush()
case proto_node.Done:
break FOR_LOOP
}
content, err := p2p.ReadMessageContent(conn)
if err != nil {
node.log.Error("Failed in reading message content from syncing node", err)
return
}
msgCategory, _ := proto.GetMessageCategory(content)
if err != nil || msgCategory != proto.Node {
node.log.Error("Failed in reading message category from syncing node", err)
return
}
msgType, err := proto.GetMessageType(content)
actionType := proto_node.NodeMessageType(msgType)
if err != nil || actionType != proto_node.BlockchainSync {
node.log.Error("Failed in reading message type from syncing node", err)
return
}
payload, err = proto.GetMessagePayload(content)
if err != nil {
node.log.Error("Failed in reading payload from syncing node", err)
return
}
}
node.log.Info("HOORAY: Done sending info to syncing node.")
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto_node.TransactionMessageType(msgPayload[0])
switch txMessageType {
case proto_node.Send:
if node.Chain != nil {
txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type
if err != nil {
node.log.Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactionsAccount(txs)
} else {
txDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Send messge type
txList := new([]*blockchain.Transaction)
err := txDecoder.Decode(&txList)
if err != nil {
node.log.Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactions(*txList)
}
case proto_node.Request:
reader := bytes.NewBuffer(msgPayload[1:])
txIDs := make(map[[32]byte]bool)
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txID [32]byte
copy(txID[:], buf)
txIDs[txID] = true
}
var txToReturn []*blockchain.Transaction
for _, tx := range node.pendingTransactions {
if txIDs[tx.ID] {
txToReturn = append(txToReturn, tx)
}
}
// TODO: return the transaction list to requester
case proto_node.Unlock:
txAndProofDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the Unlock messge type
txAndProofs := new([]*blockchain.Transaction)
err := txAndProofDecoder.Decode(&txAndProofs)
if err != nil {
node.log.Error("Failed deserializing transaction and proofs list", "node", node)
}
node.log.Debug("RECEIVED Unlock MESSAGE", "num", len(*txAndProofs))
node.addPendingTransactions(*txAndProofs)
}
}
// WaitForConsensusReady ...
func (node *Node) WaitForConsensusReady(readySignal chan struct{}) {
node.log.Debug("Waiting for Consensus ready", "node", node)
var newBlock *blockchain.Block
timeoutCount := 0
for { // keep waiting for Consensus ready
retry := false
// TODO(minhdoan, rj): Refactor by sending signal in channel instead of waiting for 10 seconds.
select {
case <-readySignal:
time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up.
case <-time.After(200 * time.Second):
retry = true
node.Consensus.ResetState()
timeoutCount++
node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node)
}
//node.log.Debug("Adding new block", "currentChainSize", len(node.blockchain.Blocks), "numTxs", len(node.blockchain.GetLatestBlock().Transactions), "PrevHash", node.blockchain.GetLatestBlock().PrevBlockHash, "Hash", node.blockchain.GetLatestBlock().Hash)
if !retry {
if len(node.blockchain.Blocks) > NumBlocksBeforeStateBlock {
// Generate state block and run consensus on it
newBlock = node.blockchain.CreateStateBlock(node.UtxoPool)
} else {
// Normal tx block consensus
for {
// Once we have pending transactions we will try creating a new block
if len(node.pendingTransactions) >= MaxNumberOfTransactionsPerBlock {
node.log.Debug("Start selecting transactions")
selectedTxs, crossShardTxAndProofs := node.getTransactionsForNewBlock(MaxNumberOfTransactionsPerBlock)
if len(selectedTxs) < MinNumberOfTransactionsPerBlock {
node.log.Debug("No valid transactions exist", "pendingTx", len(node.pendingTransactions))
} else {
node.log.Debug("Creating new block", "numAllTxs", len(selectedTxs), "numCrossTxs", len(crossShardTxAndProofs), "pendingTxs", len(node.pendingTransactions), "currentChainSize", len(node.blockchain.Blocks))
node.transactionInConsensus = selectedTxs
node.CrossTxsInConsensus = crossShardTxAndProofs
newBlock = blockchain.NewBlock(selectedTxs, node.blockchain.GetLatestBlock().Hash, node.Consensus.ShardID)
break
}
}
// If not enough transactions to run Consensus,
// periodically check whether we have enough transactions to package into block.
time.Sleep(1 * time.Second)
}
}
}
// Send the new block to Consensus so it can be confirmed.
if newBlock != nil {
node.BlockChannel <- *newBlock
}
}
}
// WaitForConsensusReadyAccount ...
func (node *Node) WaitForConsensusReadyAccount(readySignal chan struct{}) {
node.log.Debug("Waiting for Consensus ready", "node", node)
var newBlock *types.Block
timeoutCount := 0
for { // keep waiting for Consensus ready
retry := false
select {
case <-readySignal:
time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up.
case <-time.After(200 * time.Second):
retry = true
node.Consensus.ResetState()
timeoutCount++
node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node)
}
if !retry {
for {
if len(node.pendingTransactionsAccount) >= 1000 {
// Normal tx block consensus
selectedTxs, _ := node.getTransactionsForNewBlockAccount(MaxNumberOfTransactionsPerBlock)
err := node.Worker.UpdateCurrent()
if err != nil {
node.log.Debug("Failed updating worker's state", "Error", err)
}
err = node.Worker.CommitTransactions(selectedTxs, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey))
if err == nil {
block, err := node.Worker.Commit()
if err != nil {
node.log.Debug("Failed commiting new block", "Error", err)
} else {
newBlock = block
break
}
} else {
node.log.Debug("Failed to create new block", "Error", err)
}
}
// If not enough transactions to run Consensus,
// periodically check whether we have enough transactions to package into block.
time.Sleep(1 * time.Second)
}
}
// Send the new block to Consensus so it can be confirmed.
if newBlock != nil {
node.BlockChannelAccount <- newBlock
}
}
}
// SendBackProofOfAcceptOrReject is called by consensus participants to verify the block they are running consensus on
func (node *Node) SendBackProofOfAcceptOrReject() {
if node.ClientPeer != nil && len(node.CrossTxsToReturn) != 0 {
node.crossTxToReturnMutex.Lock()
proofs := []blockchain.CrossShardTxProof{}
for _, txAndProof := range node.CrossTxsToReturn {
proofs = append(proofs, *txAndProof.Proof)
}
node.CrossTxsToReturn = nil
node.crossTxToReturnMutex.Unlock()
node.log.Debug("SENDING PROOF TO CLIENT", "proofs", len(proofs))
p2p.SendMessage(*node.ClientPeer, client.ConstructProofOfAcceptOrRejectMessage(proofs))
}
}
// BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes.
// NOTE: For now, just send to the client (basically not broadcasting)
func (node *Node) BroadcastNewBlock(newBlock *blockchain.Block) {
if node.ClientPeer != nil {
node.log.Debug("NET: SENDING NEW BLOCK TO CLIENT")
p2p.SendMessage(*node.ClientPeer, proto_node.ConstructBlocksSyncMessage([]blockchain.Block{*newBlock}))
}
}
// VerifyNewBlock is called by consensus participants to verify the block they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *blockchain.Block) bool {
if newBlock.AccountBlock != nil {
accountBlock := new(types.Block)
err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock)
if err != nil {
node.log.Error("Failed decoding the block with RLP")
}
return node.VerifyNewBlockAccount(accountBlock)
}
if newBlock.IsStateBlock() {
return node.UtxoPool.VerifyStateBlock(newBlock)
}
return node.UtxoPool.VerifyTransactions(newBlock.Transactions)
}
// VerifyNewBlockAccount is called by consensus participants to verify the block (account model) they are running consensus on
func (node *Node) VerifyNewBlockAccount(newBlock *types.Block) bool {
err := node.Chain.ValidateNewBlock(newBlock, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey))
if err != nil {
node.log.Debug("Failed verifying new block", "Error", err, "tx", newBlock.Transactions()[0])
return false
}
return true
}
// PostConsensusProcessing is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] move cross shard tx and proof to the list where they wait to be sent to the client
func (node *Node) PostConsensusProcessing(newBlock *blockchain.Block) {
if newBlock.IsStateBlock() {
// Clear out old tx blocks and put state block as genesis
if node.db != nil {
node.log.Info("Deleting old blocks.")
for i := 1; i <= len(node.blockchain.Blocks); i++ {
blockchain.Delete(node.db, strconv.Itoa(i))
}
}
node.blockchain.Blocks = []*blockchain.Block{}
}
if node.Consensus.IsLeader {
// Move crossTx-in-consensus into the list to be returned to client
for _, crossTxAndProof := range node.CrossTxsInConsensus {
crossTxAndProof.Proof.BlockHash = newBlock.Hash
// TODO: fill in the signature proofs
}
if len(node.CrossTxsInConsensus) != 0 {
node.addCrossTxsToReturn(node.CrossTxsInConsensus)
node.CrossTxsInConsensus = []*blockchain.CrossShardTxAndProof{}
}
node.SendBackProofOfAcceptOrReject()
node.BroadcastNewBlock(newBlock)
}
accountBlock := new(types.Block)
err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock)
if err != nil {
node.log.Error("Failed decoding the block with RLP")
}
node.AddNewBlock(newBlock)
node.UpdateUtxoAndState(newBlock)
}
// AddNewBlockAccount is usedd to add new block into the blockchain.
func (node *Node) AddNewBlockAccount(newBlock *types.Block) {
num, err := node.Chain.InsertChain([]*types.Block{newBlock})
if err != nil {
node.log.Debug("Error adding to chain", "numBlocks", num, "Error", err)
}
}
// AddNewBlock is usedd to add new block into the utxo-based blockchain.
func (node *Node) AddNewBlock(newBlock *blockchain.Block) {
// Add it to blockchain
node.blockchain.Blocks = append(node.blockchain.Blocks, newBlock)
// Store it into leveldb.
if node.db != nil {
node.log.Info("Writing new block into disk.")
newBlock.Write(node.db, strconv.Itoa(len(node.blockchain.Blocks)))
}
// Account model
accountBlock := new(types.Block)
err := rlp.DecodeBytes(newBlock.AccountBlock, accountBlock)
if err != nil {
node.log.Error("Failed decoding the block with RLP")
}
node.AddNewBlockAccount(accountBlock)
}
// UpdateUtxoAndState updates Utxo and state.
func (node *Node) UpdateUtxoAndState(newBlock *blockchain.Block) {
// Update UTXO pool
if newBlock.IsStateBlock() {
newUtxoPool := blockchain.CreateUTXOPoolFromGenesisBlock(newBlock)
node.UtxoPool.UtxoMap = newUtxoPool.UtxoMap
} else {
node.UtxoPool.Update(newBlock.Transactions)
}
// Clear transaction-in-Consensus list
node.transactionInConsensus = []*blockchain.Transaction{}
if node.Consensus.IsLeader {
node.log.Info("TX in New BLOCK", "num", len(newBlock.Transactions), "ShardID", node.UtxoPool.ShardID, "IsStateBlock", newBlock.IsStateBlock())
node.log.Info("LEADER CURRENT UTXO", "num", node.UtxoPool.CountNumOfUtxos(), "ShardID", node.UtxoPool.ShardID)
node.log.Info("LEADER LOCKED UTXO", "num", node.UtxoPool.CountNumOfLockedUtxos(), "ShardID", node.UtxoPool.ShardID)
}
}
func (node *Node) pingMessageHandler(msgPayload []byte) int {
ping, err := proto_node.GetPingMessage(msgPayload)
if err != nil {
node.log.Error("Can't get Ping Message")
return -1
}
// node.log.Info("Ping", "Msg", ping)
peer := new(p2p.Peer)
peer.Ip = ping.Node.IP
peer.Port = ping.Node.Port
peer.ValidatorID = ping.Node.ValidatorID
peer.PubKey = hmy_crypto.Ed25519Curve.Point()
err = peer.PubKey.UnmarshalBinary(ping.Node.PubKey[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed", "error", err)
return -1
}
// Add to Node's peer list
node.AddPeers([]p2p.Peer{*peer})
// Send a Pong message back
peers := node.Consensus.GetValidatorPeers()
pong := proto_node.NewPongMessage(peers, node.Consensus.PublicKeys)
buffer := pong.ConstructPongMessage()
for _, p := range peers {
p2p.SendMessage(p, buffer)
}
return len(peers)
}
func (node *Node) pongMessageHandler(msgPayload []byte) int {
pong, err := proto_node.GetPongMessage(msgPayload)
if err != nil {
node.log.Error("Can't get Pong Message")
return -1
}
// node.log.Info("Pong", "Msg", pong)
// TODO (lc) state syncing, and wait for all public keys
node.State = NodeJoinedShard
peers := make([]p2p.Peer, 0)
for _, p := range pong.Peers {
peer := new(p2p.Peer)
peer.Ip = p.IP
peer.Port = p.Port
peer.ValidatorID = p.ValidatorID
peer.PubKey = hmy_crypto.Ed25519Curve.Point()
err = peer.PubKey.UnmarshalBinary(p.PubKey[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed", "error", err)
continue
}
peers = append(peers, *peer)
}
if len(peers) > 0 {
node.AddPeers(peers)
}
// Reset Validator PublicKeys every time we receive PONG message from Leader
// The PublicKeys has to be idential across the shard on every node
// TODO (lc): we need to handle RemovePeer situation
publicKeys := make([]kyber.Point, 0)
// Create the the PubKey from the []byte sent from leader
for _, k := range pong.PubKeys {
key := hmy_crypto.Ed25519Curve.Point()
err = key.UnmarshalBinary(k[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed PubKeys", "error", err)
continue
}
publicKeys = append(publicKeys, key)
}
return node.Consensus.UpdatePublicKeys(publicKeys)
}