The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

259 lines
8.3 KiB

package node
import (
"bytes"
"encoding/gob"
"harmony-benchmark/blockchain"
"harmony-benchmark/client"
"harmony-benchmark/common"
"harmony-benchmark/consensus"
"harmony-benchmark/p2p"
"net"
"os"
"time"
)
const (
// The max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 3000
)
// NodeHandler handles a new incoming connection.
func (node *Node) NodeHandler(conn net.Conn) {
defer conn.Close()
// Read p2p message payload
content, err := p2p.ReadMessageContent(conn)
if err != nil {
node.log.Error("Read p2p data failed", "err", err, "node", node)
return
}
consensusObj := node.Consensus
msgCategory, err := common.GetMessageCategory(content)
if err != nil {
node.log.Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := common.GetMessageType(content)
if err != nil {
node.log.Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := common.GetMessagePayload(content)
if err != nil {
node.log.Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case common.COMMITTEE:
actionType := consensus.CommitteeMessageType(msgType)
switch actionType {
case consensus.CONSENSUS:
if consensusObj.IsLeader {
consensusObj.ProcessMessageLeader(msgPayload)
} else {
consensusObj.ProcessMessageValidator(msgPayload)
}
}
case common.NODE:
actionType := NodeMessageType(msgType)
switch actionType {
case TRANSACTION:
node.transactionMessageHandler(msgPayload)
case CONTROL:
controlType := msgPayload[0]
if ControlMessageType(controlType) == STOP {
node.log.Debug("Stopping Node", "node", node, "numBlocks", len(node.blockchain.Blocks), "numTxsProcessed", node.countNumTransactionsInBlockchain())
byteBuffer := bytes.NewBuffer([]byte{})
encoder := gob.NewEncoder(byteBuffer)
encoder.Encode(node.UtxoPool.UtxoMap)
node.log.Debug("UtxoPool Report", "numEntries", len(node.UtxoPool.UtxoMap), "sizeInBytes", len(byteBuffer.Bytes()))
avgBlockSizeInBytes := 0
for _, block := range node.blockchain.Blocks {
byteBuffer = bytes.NewBuffer([]byte{})
encoder = gob.NewEncoder(byteBuffer)
encoder.Encode(block)
avgBlockSizeInBytes += len(byteBuffer.Bytes())
}
avgBlockSizeInBytes = avgBlockSizeInBytes / len(node.blockchain.Blocks)
node.log.Debug("Blockchain Report", "numBlocks", len(node.blockchain.Blocks), "sizeInBytes", avgBlockSizeInBytes)
os.Exit(0)
}
case EXPERIMENT:
expType := msgPayload[0]
switch ExperimentMessageType(expType) {
case UTXO_REQUEST:
node.log.Debug("Received UTXO request")
p2p.SendMessage(*node.ClientPeer, ConstructUtxoResponseMessage(node.UtxoPool.GetSnapshot()))
case UTXO_RESPONSE:
node.log.Debug("Received UTXO response")
decoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the UTXO_RESPONSE messge type
utxoPool := new(blockchain.UTXOPool)
decoder.Decode(utxoPool)
if node.Client != nil && utxoPool != nil {
node.Client.UpdateUtxoPool(*utxoPool)
}
}
}
case common.CLIENT:
actionType := client.ClientMessageType(msgType)
switch actionType {
case client.TRANSACTION:
if node.Client != nil {
node.Client.TransactionMessageHandler(msgPayload)
}
}
}
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := TransactionMessageType(msgPayload[0])
switch txMessageType {
case SEND:
txDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the SEND messge type
txList := new([]*blockchain.Transaction)
err := txDecoder.Decode(&txList)
if err != nil {
node.log.Error("Failed deserializing transaction list", "node", node)
}
node.addPendingTransactions(*txList)
case REQUEST:
reader := bytes.NewBuffer(msgPayload[1:])
var txIds map[[32]byte]bool
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txId [32]byte
copy(txId[:], buf)
txIds[txId] = true
}
var txToReturn []*blockchain.Transaction
for _, tx := range node.pendingTransactions {
if txIds[tx.ID] {
txToReturn = append(txToReturn, tx)
}
}
// TODO: return the transaction list to requester
case UNLOCK:
txAndProofDecoder := gob.NewDecoder(bytes.NewReader(msgPayload[1:])) // skip the UNLOCK messge type
txAndProofs := new([]*blockchain.Transaction)
err := txAndProofDecoder.Decode(&txAndProofs)
if err != nil {
node.log.Error("Failed deserializing transaction and proofs list", "node", node)
}
node.log.Debug("RECEIVED UNLOCK MESSAGE", "num", len(*txAndProofs))
node.addPendingTransactions(*txAndProofs)
}
}
// WaitForConsensusReady ...
func (node *Node) WaitForConsensusReady(readySignal chan int) {
node.log.Debug("Waiting for Consensus ready", "node", node)
var newBlock *blockchain.Block
timeoutCount := 0
for { // keep waiting for Consensus ready
retry := false
select {
case <-readySignal:
case <-time.After(8 * time.Second):
retry = true
timeoutCount++
node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node)
}
//node.log.Debug("Adding new block", "currentChainSize", len(node.blockchain.Blocks), "numTxs", len(node.blockchain.GetLatestBlock().Transactions), "PrevHash", node.blockchain.GetLatestBlock().PrevBlockHash, "Hash", node.blockchain.GetLatestBlock().Hash)
if !retry {
for {
// Once we have more than 10 transactions pending we will try creating a new block
if len(node.pendingTransactions) >= 100 {
selectedTxs, crossShardTxAndProofs := node.getTransactionsForNewBlock(MaxNumberOfTransactionsPerBlock)
if len(selectedTxs) == 0 {
node.log.Debug("No valid transactions exist", "pendingTx", len(node.pendingTransactions))
} else {
node.log.Debug("Creating new block", "numTxs", len(selectedTxs), "pendingTxs", len(node.pendingTransactions), "currentChainSize", len(node.blockchain.Blocks))
node.transactionInConsensus = selectedTxs
node.log.Debug("CROSS SHARD TX", "num", len(crossShardTxAndProofs))
node.CrossTxsInConsensus = crossShardTxAndProofs
newBlock = blockchain.NewBlock(selectedTxs, node.blockchain.GetLatestBlock().Hash, node.Consensus.ShardID)
break
}
}
// If not enough transactions to run Consensus,
// periodically check whether we have enough transactions to package into block.
time.Sleep(1 * time.Second)
}
}
// Send the new block to Consensus so it can be confirmed.
if newBlock != nil {
node.BlockChannel <- *newBlock
}
}
}
// This is called by consensus participants to verify the block they are running consensus on
func (node *Node) SendBackProofOfAcceptOrReject() {
if node.ClientPeer != nil && len(node.CrossTxsToReturn) != 0 {
node.crossTxToReturnMutex.Lock()
proofs := []blockchain.CrossShardTxProof{}
for _, txAndProof := range node.CrossTxsToReturn {
proofs = append(proofs, *txAndProof.Proof)
}
node.CrossTxsToReturn = nil
node.crossTxToReturnMutex.Unlock()
node.log.Debug("SENDING PROOF TO CLIENT", "proofs", len(proofs))
p2p.SendMessage(*node.ClientPeer, client.ConstructProofOfAcceptOrRejectMessage(proofs))
}
}
// This is called by consensus participants to verify the block they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *blockchain.Block) bool {
return node.UtxoPool.VerifyTransactions(newBlock.Transactions)
}
// This is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] move cross shard tx and proof to the list where they wait to be sent to the client
func (node *Node) PostConsensusProcessing(newBlock *blockchain.Block) {
// Add it to blockchain
node.blockchain.Blocks = append(node.blockchain.Blocks, newBlock)
// Update UTXO pool
node.UtxoPool.Update(newBlock.Transactions)
// Clear transaction-in-Consensus list
node.transactionInConsensus = []*blockchain.Transaction{}
if node.Consensus.IsLeader {
// Move crossTx-in-consensus into the list to be returned to client
for _, crossTxAndProof := range node.CrossTxsInConsensus {
crossTxAndProof.Proof.BlockHash = newBlock.Hash
// TODO: fill in the signature proofs
}
if len(node.CrossTxsInConsensus) != 0 {
node.addCrossTxsToReturn(node.CrossTxsInConsensus)
node.CrossTxsInConsensus = []*blockchain.CrossShardTxAndProof{}
}
node.SendBackProofOfAcceptOrReject()
}
}