You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
10 KiB
296 lines
10 KiB
package core
|
|
|
|
import (
|
|
"encoding/hex"
|
|
"errors"
|
|
"math/big"
|
|
"math/rand"
|
|
"sort"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/harmony-one/bls/ffi/go/bls"
|
|
|
|
"github.com/harmony-one/harmony/contracts/structs"
|
|
common2 "github.com/harmony-one/harmony/internal/common"
|
|
shardingconfig "github.com/harmony-one/harmony/internal/configs/sharding"
|
|
"github.com/harmony-one/harmony/internal/ctxerror"
|
|
"github.com/harmony-one/harmony/internal/utils"
|
|
"github.com/harmony-one/harmony/shard"
|
|
)
|
|
|
|
const (
|
|
// GenesisEpoch is the number of the genesis epoch.
|
|
GenesisEpoch = 0
|
|
// CuckooRate is the percentage of nodes getting reshuffled in the second step of cuckoo resharding.
|
|
CuckooRate = 0.1
|
|
)
|
|
|
|
// ShardingState is data structure hold the sharding state
|
|
type ShardingState struct {
|
|
epoch uint64 // current epoch
|
|
rnd uint64 // random seed for resharding
|
|
numShards int // TODO ek – equal to len(shardState); remove this
|
|
shardState shard.State
|
|
}
|
|
|
|
// sortedCommitteeBySize will sort shards by size
|
|
// Suppose there are N shards, the first N/2 larger shards are called active committees
|
|
// the rest N/2 smaller committees are called inactive committees
|
|
// actually they are all just normal shards
|
|
// TODO: sort the committee weighted by total staking instead of shard size
|
|
func (ss *ShardingState) sortCommitteeBySize() {
|
|
sort.Slice(ss.shardState, func(i, j int) bool {
|
|
return len(ss.shardState[i].NodeList) > len(ss.shardState[j].NodeList)
|
|
})
|
|
}
|
|
|
|
// assignNewNodes add new nodes into the N/2 active committees evenly
|
|
func (ss *ShardingState) assignNewNodes(newNodeList []shard.NodeID) {
|
|
ss.sortCommitteeBySize()
|
|
numActiveShards := ss.numShards / 2
|
|
Shuffle(newNodeList)
|
|
for i, nid := range newNodeList {
|
|
id := 0
|
|
if numActiveShards > 0 {
|
|
id = i % numActiveShards
|
|
}
|
|
if id < len(ss.shardState) {
|
|
ss.shardState[id].NodeList = append(ss.shardState[id].NodeList, nid)
|
|
} else {
|
|
utils.Logger().Error().Int("id", id).Int("shardState Count", len(ss.shardState)).Msg("assignNewNodes index out of range")
|
|
}
|
|
}
|
|
}
|
|
|
|
// cuckooResharding uses cuckoo rule to reshard X% of active committee(shards) into inactive committee(shards)
|
|
func (ss *ShardingState) cuckooResharding(percent float64) {
|
|
numActiveShards := ss.numShards / 2
|
|
kickedNodes := []shard.NodeID{}
|
|
for i := range ss.shardState {
|
|
if i >= numActiveShards {
|
|
break
|
|
}
|
|
numKicked := int(percent * float64(len(ss.shardState[i].NodeList)))
|
|
if numKicked == 0 {
|
|
numKicked++ // At least kick one node out
|
|
}
|
|
length := len(ss.shardState[i].NodeList)
|
|
if length-numKicked <= 0 {
|
|
continue // Never empty a shard
|
|
}
|
|
tmp := ss.shardState[i].NodeList[length-numKicked:]
|
|
kickedNodes = append(kickedNodes, tmp...)
|
|
ss.shardState[i].NodeList = ss.shardState[i].NodeList[:length-numKicked]
|
|
}
|
|
|
|
Shuffle(kickedNodes)
|
|
numInactiveShards := ss.numShards - numActiveShards
|
|
for i, nid := range kickedNodes {
|
|
id := numActiveShards
|
|
if numInactiveShards > 0 {
|
|
id += i % numInactiveShards
|
|
}
|
|
ss.shardState[id].NodeList = append(ss.shardState[id].NodeList, nid)
|
|
}
|
|
}
|
|
|
|
// Reshard will first add new nodes into shards, then use cuckoo rule to reshard to get new shard state
|
|
func (ss *ShardingState) Reshard(newNodeList []shard.NodeID, percent float64) {
|
|
rand.Seed(int64(ss.rnd))
|
|
ss.sortCommitteeBySize()
|
|
|
|
// Take out and preserve leaders
|
|
leaders := []shard.NodeID{}
|
|
for i := 0; i < ss.numShards; i++ {
|
|
if len(ss.shardState[i].NodeList) > 0 {
|
|
leaders = append(leaders, ss.shardState[i].NodeList[0])
|
|
ss.shardState[i].NodeList = ss.shardState[i].NodeList[1:]
|
|
// Also shuffle the rest of the nodes
|
|
Shuffle(ss.shardState[i].NodeList)
|
|
}
|
|
}
|
|
|
|
ss.assignNewNodes(newNodeList)
|
|
ss.cuckooResharding(percent)
|
|
|
|
// Put leader back
|
|
if len(leaders) < ss.numShards {
|
|
utils.Logger().Error().Msg("Not enough leaders to assign to shards")
|
|
}
|
|
for i := 0; i < ss.numShards; i++ {
|
|
ss.shardState[i].NodeList = append([]shard.NodeID{leaders[i]}, ss.shardState[i].NodeList...)
|
|
}
|
|
}
|
|
|
|
// Shuffle will shuffle the list with result uniquely determined by seed, assuming there is no repeat items in the list
|
|
func Shuffle(list []shard.NodeID) {
|
|
// Sort to make sure everyone will generate the same with the same rand seed.
|
|
sort.Slice(list, func(i, j int) bool {
|
|
return shard.CompareNodeIDByBLSKey(list[i], list[j]) == -1
|
|
})
|
|
rand.Shuffle(len(list), func(i, j int) {
|
|
list[i], list[j] = list[j], list[i]
|
|
})
|
|
}
|
|
|
|
// GetEpochFromBlockNumber calculates the epoch number the block belongs to
|
|
func GetEpochFromBlockNumber(blockNumber uint64) uint64 {
|
|
return ShardingSchedule.CalcEpochNumber(blockNumber).Uint64()
|
|
}
|
|
|
|
// GetShardingStateFromBlockChain will retrieve random seed and shard map from beacon chain for given a epoch
|
|
func GetShardingStateFromBlockChain(bc *BlockChain, epoch *big.Int) (*ShardingState, error) {
|
|
if bc == nil {
|
|
return nil, errors.New("no blockchain is supplied to get shard state")
|
|
}
|
|
shardState, err := bc.ReadShardState(epoch)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
shardState = shardState.DeepCopy()
|
|
|
|
// TODO(RJ,HB): use real randomness for resharding
|
|
//blockNumber := GetBlockNumberFromEpoch(epoch.Uint64())
|
|
//rndSeedBytes := bc.GetVdfByNumber(blockNumber)
|
|
rndSeed := uint64(0)
|
|
|
|
return &ShardingState{epoch: epoch.Uint64(), rnd: rndSeed, shardState: shardState, numShards: len(shardState)}, nil
|
|
}
|
|
|
|
// CalculateNewShardState get sharding state from previous epoch and calculate sharding state for new epoch
|
|
func CalculateNewShardState(
|
|
bc *BlockChain, epoch *big.Int,
|
|
stakeInfo *map[common.Address]*structs.StakeInfo,
|
|
) (shard.State, error) {
|
|
if epoch.Cmp(big.NewInt(GenesisEpoch)) == 0 {
|
|
return CalculateInitShardState(), nil
|
|
}
|
|
prevEpoch := new(big.Int).Sub(epoch, common.Big1)
|
|
ss, err := GetShardingStateFromBlockChain(bc, prevEpoch)
|
|
if err != nil {
|
|
return nil, ctxerror.New("cannot retrieve previous sharding state").
|
|
WithCause(err)
|
|
}
|
|
newNodeList := ss.UpdateShardingState(stakeInfo)
|
|
utils.Logger().Info().Float64("percentage", CuckooRate).Msg("Cuckoo Rate")
|
|
ss.Reshard(newNodeList, CuckooRate)
|
|
return ss.shardState, nil
|
|
}
|
|
|
|
// UpdateShardingState remove the unstaked nodes and returns the newly staked node Ids.
|
|
func (ss *ShardingState) UpdateShardingState(stakeInfo *map[common.Address]*structs.StakeInfo) []shard.NodeID {
|
|
oldBlsPublicKeys := make(map[shard.BlsPublicKey]bool) // map of bls public keys
|
|
for _, shard := range ss.shardState {
|
|
newNodeList := shard.NodeList
|
|
for _, nodeID := range shard.NodeList {
|
|
oldBlsPublicKeys[nodeID.BlsPublicKey] = true
|
|
_, ok := (*stakeInfo)[nodeID.EcdsaAddress]
|
|
if ok {
|
|
// newNodeList = append(newNodeList, nodeID)
|
|
} else {
|
|
// TODO: Remove the node if it's no longer staked
|
|
}
|
|
}
|
|
shard.NodeList = newNodeList
|
|
}
|
|
|
|
newAddresses := []shard.NodeID{}
|
|
for addr, info := range *stakeInfo {
|
|
_, ok := oldBlsPublicKeys[info.BlsPublicKey]
|
|
if !ok {
|
|
newAddresses = append(newAddresses, shard.NodeID{
|
|
EcdsaAddress: addr,
|
|
BlsPublicKey: info.BlsPublicKey,
|
|
})
|
|
}
|
|
}
|
|
return newAddresses
|
|
}
|
|
|
|
// TODO ek – shardingSchedule should really be part of a general-purpose network
|
|
// configuration. We are OK for the time being,
|
|
// until the day we should let one node process join multiple networks.
|
|
|
|
// ShardingSchedule is the sharding configuration schedule.
|
|
// Depends on the type of the network. Defaults to the mainnet schedule.
|
|
var ShardingSchedule shardingconfig.Schedule = shardingconfig.MainnetSchedule
|
|
|
|
// CalculateInitShardState returns the initial shard state at genesis.
|
|
func CalculateInitShardState() shard.State {
|
|
return CalculateShardState(big.NewInt(GenesisEpoch))
|
|
}
|
|
|
|
// CalculateShardState returns the shard state based on epoch number
|
|
// This api for getting shard state is what should be used to get shard state regardless of
|
|
// current chain dependency (ex. getting shard state from block header received during cross-shard transaction)
|
|
func CalculateShardState(epoch *big.Int) shard.State {
|
|
utils.Logger().Info().Int64("epoch", epoch.Int64()).Msg("Get Shard State of Epoch.")
|
|
shardingConfig := ShardingSchedule.InstanceForEpoch(epoch)
|
|
shardNum := int(shardingConfig.NumShards())
|
|
shardHarmonyNodes := shardingConfig.NumHarmonyOperatedNodesPerShard()
|
|
shardSize := shardingConfig.NumNodesPerShard()
|
|
hmyAccounts := shardingConfig.HmyAccounts()
|
|
fnAccounts := shardingConfig.FnAccounts()
|
|
|
|
shardState := shard.State{}
|
|
for i := 0; i < shardNum; i++ {
|
|
com := shard.Committee{ShardID: uint32(i)}
|
|
for j := 0; j < shardHarmonyNodes; j++ {
|
|
index := i + j*shardNum // The initial account to use for genesis nodes
|
|
|
|
pub := &bls.PublicKey{}
|
|
pub.DeserializeHexStr(hmyAccounts[index].BlsPublicKey)
|
|
pubKey := shard.BlsPublicKey{}
|
|
pubKey.FromLibBLSPublicKey(pub)
|
|
// TODO: directly read address for bls too
|
|
curNodeID := shard.NodeID{
|
|
EcdsaAddress: common2.ParseAddr(hmyAccounts[index].Address),
|
|
BlsPublicKey: pubKey,
|
|
}
|
|
com.NodeList = append(com.NodeList, curNodeID)
|
|
}
|
|
|
|
// add FN runner's key
|
|
for j := shardHarmonyNodes; j < shardSize; j++ {
|
|
index := i + (j-shardHarmonyNodes)*shardNum
|
|
|
|
pub := &bls.PublicKey{}
|
|
pub.DeserializeHexStr(fnAccounts[index].BlsPublicKey)
|
|
|
|
pubKey := shard.BlsPublicKey{}
|
|
pubKey.FromLibBLSPublicKey(pub)
|
|
// TODO: directly read address for bls too
|
|
curNodeID := shard.NodeID{
|
|
EcdsaAddress: common2.ParseAddr(fnAccounts[index].Address),
|
|
BlsPublicKey: pubKey,
|
|
}
|
|
com.NodeList = append(com.NodeList, curNodeID)
|
|
}
|
|
shardState = append(shardState, com)
|
|
}
|
|
return shardState
|
|
}
|
|
|
|
// CalculatePublicKeys returns the publickeys given epoch and shardID
|
|
func CalculatePublicKeys(epoch *big.Int, shardID uint32) []*bls.PublicKey {
|
|
shardState := CalculateShardState(epoch)
|
|
|
|
// Update validator public keys
|
|
committee := shardState.FindCommitteeByID(shardID)
|
|
if committee == nil {
|
|
utils.Logger().Warn().Uint32("shardID", shardID).Uint64("epoch", epoch.Uint64()).Msg("Cannot find committee")
|
|
return nil
|
|
}
|
|
pubKeys := []*bls.PublicKey{}
|
|
for _, node := range committee.NodeList {
|
|
pubKey := &bls.PublicKey{}
|
|
pubKeyBytes := node.BlsPublicKey[:]
|
|
err := pubKey.Deserialize(pubKeyBytes)
|
|
if err != nil {
|
|
utils.Logger().Warn().Str("pubKeyBytes", hex.EncodeToString(pubKeyBytes)).Msg("Cannot Deserialize pubKey")
|
|
return nil
|
|
}
|
|
pubKeys = append(pubKeys, pubKey)
|
|
}
|
|
return pubKeys
|
|
}
|
|
|