The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

389 lines
12 KiB

package node
import (
"bytes"
"fmt"
"os"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/dedis/kyber"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/api/proto"
proto_identity "github.com/harmony-one/harmony/api/proto/identity"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/core/types"
hmy_crypto "github.com/harmony-one/harmony/crypto"
"github.com/harmony-one/harmony/crypto/pki"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/p2p/host"
)
const (
// MaxNumberOfTransactionsPerBlock is the max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 8000
)
// MaybeBroadcastAsValidator returns if the node is a validator node.
func (node *Node) MaybeBroadcastAsValidator(content []byte) {
// TODO: this is tree-based broadcasting. this needs to be replaced by p2p gossiping.
if node.SelfPeer.ValidatorID > 0 && node.SelfPeer.ValidatorID <= host.MaxBroadCast {
go host.BroadcastMessageFromValidator(node.host, node.SelfPeer, node.Consensus.GetValidatorPeers(), content)
}
}
// StreamHandler handles a new incoming network message.
func (node *Node) StreamHandler(s p2p.Stream) {
defer s.Close()
// Read p2p message payload
content, err := p2p.ReadMessageContent(s)
if err != nil {
node.log.Error("Read p2p data failed", "err", err, "node", node)
return
}
node.MaybeBroadcastAsValidator(content)
consensusObj := node.Consensus
msgCategory, err := proto.GetMessageCategory(content)
if err != nil {
node.log.Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := proto.GetMessageType(content)
if err != nil {
node.log.Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err != nil {
node.log.Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case proto.Identity:
actionType := proto_identity.IDMessageType(msgType)
switch actionType {
case proto_identity.Identity:
messageType := proto_identity.MessageType(msgPayload[0])
switch messageType {
case proto_identity.Register:
fmt.Println("received a identity message")
node.log.Info("NET: received message: IDENTITY/REGISTER")
default:
node.log.Error("Announce message should be sent to IdentityChain")
}
}
case proto.Consensus:
msgPayload, _ := proto.GetConsensusMessagePayload(content)
if consensusObj.IsLeader {
node.log.Info("NET: Leader received message:", "messageCategory", msgCategory, "messageType", msgType)
consensusObj.ProcessMessageLeader(msgPayload)
} else {
node.log.Info("NET: Validator received message:", "messageCategory", msgCategory, "messageType", msgType)
consensusObj.ProcessMessageValidator(msgPayload)
// TODO(minhdoan): add logic to check if the current blockchain is not sync with other consensus
// we should switch to other state rather than DoingConsensus.
}
case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto_node.Transaction:
node.log.Info("NET: received message: Node/Transaction")
node.transactionMessageHandler(msgPayload)
case proto_node.Block:
node.log.Info("NET: received message: Node/Block")
blockMsgType := proto_node.BlockMessageType(msgPayload[0])
switch blockMsgType {
case proto_node.Sync:
var blocks []*types.Block
err := rlp.DecodeBytes(msgPayload[1:], &blocks) // skip the Sync messge type
if err != nil {
node.log.Error("block sync", "error", err)
} else {
if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil {
node.Client.UpdateBlocks(blocks)
}
}
}
case proto_node.Control:
node.log.Info("NET: received message: Node/Control")
controlType := msgPayload[0]
if proto_node.ControlMessageType(controlType) == proto_node.STOP {
node.log.Debug("Stopping Node", "node", node, "numBlocks", node.blockchain.CurrentBlock().NumberU64(), "numTxsProcessed", node.countNumTransactionsInBlockchain())
var avgBlockSizeInBytes common.StorageSize
txCount := 0
blockCount := 0
avgTxSize := 0
for block := node.blockchain.CurrentBlock(); block != nil; block = node.blockchain.GetBlockByHash(block.Header().ParentHash) {
avgBlockSizeInBytes += block.Size()
txCount += len(block.Transactions())
bytes, _ := rlp.EncodeToBytes(block.Transactions())
avgTxSize += len(bytes)
blockCount++
}
if blockCount != 0 {
avgBlockSizeInBytes = avgBlockSizeInBytes / common.StorageSize(blockCount)
avgTxSize = avgTxSize / txCount
}
node.log.Debug("Blockchain Report", "totalNumBlocks", blockCount, "avgBlockSizeInCurrentEpoch", avgBlockSizeInBytes, "totalNumTxs", txCount, "avgTxSzieInCurrentEpoch", avgTxSize)
os.Exit(0)
}
case proto_node.PING:
node.pingMessageHandler(msgPayload)
case proto_node.PONG:
node.pongMessageHandler(msgPayload)
}
default:
node.log.Error("Unknown", "MsgCategory", msgCategory)
}
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto_node.TransactionMessageType(msgPayload[0])
switch txMessageType {
case proto_node.Send:
txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type
if err != nil {
node.log.Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactions(txs)
case proto_node.Request:
reader := bytes.NewBuffer(msgPayload[1:])
txIDs := make(map[[32]byte]bool)
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txID [32]byte
copy(txID[:], buf)
txIDs[txID] = true
}
var txToReturn []*types.Transaction
for _, tx := range node.pendingTransactions {
if txIDs[tx.Hash()] {
txToReturn = append(txToReturn, tx)
}
}
}
}
// WaitForConsensusReady listen for the readiness signal from consensus and generate new block for consensus.
func (node *Node) WaitForConsensusReady(readySignal chan struct{}) {
node.log.Debug("Waiting for Consensus ready", "node", node)
time.Sleep(15 * time.Second) // Wait for other nodes to be ready (test-only)
firstTime := true
var newBlock *types.Block
timeoutCount := 0
for {
// keep waiting for Consensus ready
select {
case <-readySignal:
time.Sleep(100 * time.Millisecond) // Delay a bit so validator is catched up (test-only).
case <-time.After(200 * time.Second):
node.Consensus.ResetState()
timeoutCount++
node.log.Debug("Consensus timeout, retry!", "count", timeoutCount, "node", node)
}
for {
// threshold and firstTime are for the test-only built-in smart contract tx. TODO: remove in production
threshold := 1
if firstTime {
threshold = 2
firstTime = false
}
node.log.Debug("STARTING BLOCK", "threshold", threshold, "pendingTransactions", len(node.pendingTransactions))
if len(node.pendingTransactions) >= threshold {
// Normal tx block consensus
selectedTxs := node.getTransactionsForNewBlock(MaxNumberOfTransactionsPerBlock)
if len(selectedTxs) != 0 {
node.Worker.CommitTransactions(selectedTxs)
block, err := node.Worker.Commit()
if err != nil {
node.log.Debug("Failed commiting new block", "Error", err)
} else {
newBlock = block
break
}
}
}
// If not enough transactions to run Consensus,
// periodically check whether we have enough transactions to package into block.
time.Sleep(1 * time.Second)
}
// Send the new block to Consensus so it can be confirmed.
if newBlock != nil {
node.BlockChannel <- newBlock
}
}
}
// BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes.
// NOTE: For now, just send to the client (basically not broadcasting)
// TODO (lc): broadcast the new blocks to new nodes doing state sync
func (node *Node) BroadcastNewBlock(newBlock *types.Block) {
if node.ClientPeer != nil {
node.log.Debug("Sending new block to client", "client", node.ClientPeer)
node.SendMessage(*node.ClientPeer, proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock}))
}
}
// VerifyNewBlock is called by consensus participants to verify the block (account model) they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *types.Block) bool {
err := node.blockchain.ValidateNewBlock(newBlock, pki.GetAddressFromPublicKey(node.SelfPeer.PubKey))
if err != nil {
node.log.Debug("Failed verifying new block", "Error", err, "tx", newBlock.Transactions()[0])
return false
}
return true
}
// PostConsensusProcessing is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] send new block to the client
func (node *Node) PostConsensusProcessing(newBlock *types.Block) {
if node.Consensus.IsLeader {
node.BroadcastNewBlock(newBlock)
}
node.AddNewBlock(newBlock)
}
// AddNewBlock is usedd to add new block into the blockchain.
func (node *Node) AddNewBlock(newBlock *types.Block) {
blockNum, err := node.blockchain.InsertChain([]*types.Block{newBlock})
if err != nil {
node.log.Debug("Error adding new block to blockchain", "blockNum", blockNum, "Error", err)
} else {
node.log.Info("adding new block to blockchain", "blockNum", blockNum)
}
}
func (node *Node) pingMessageHandler(msgPayload []byte) int {
ping, err := proto_node.GetPingMessage(msgPayload)
if err != nil {
node.log.Error("Can't get Ping Message")
return -1
}
// node.log.Info("Ping", "Msg", ping)
peer := new(p2p.Peer)
peer.IP = ping.Node.IP
peer.Port = ping.Node.Port
peer.PeerID = ping.Node.PeerID
peer.ValidatorID = ping.Node.ValidatorID
peer.PubKey = hmy_crypto.Ed25519Curve.Point()
err = peer.PubKey.UnmarshalBinary(ping.Node.PubKey[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed", "error", err)
return -1
}
if ping.Node.Role == proto_node.ClientRole {
node.log.Info("Add Client Peer to Node", "Node", node.Consensus.GetNodeID(), "Client", peer)
node.ClientPeer = peer
return 0
}
// Add to Node's peer list anyway
node.AddPeers([]*p2p.Peer{peer})
peers := node.Consensus.GetValidatorPeers()
pong := proto_node.NewPongMessage(peers, node.Consensus.PublicKeys)
buffer := pong.ConstructPongMessage()
// Send a Pong message directly to the sender
// This is necessary because the sender will need to get a ValidatorID
// Just broadcast won't work, some validators won't receive the latest
// PublicKeys as we rely on a valid ValidatorID to do broadcast.
// This is very buggy, but we will move to libp2p, hope the problem will
// be resolved then.
// However, I disable it for now as we are sending redundant PONG messages
// to all validators. This may not be needed. But it maybe add back.
// p2p.SendMessage(*peer, buffer)
// Broadcast the message to all validators, as publicKeys is updated
// FIXME: HAR-89 use a separate nodefind/neighbor message
host.BroadcastMessageFromLeader(node.GetHost(), peers, buffer, node.Consensus.OfflinePeers)
return len(peers)
}
func (node *Node) pongMessageHandler(msgPayload []byte) int {
pong, err := proto_node.GetPongMessage(msgPayload)
if err != nil {
node.log.Error("Can't get Pong Message")
return -1
}
// node.log.Debug("pongMessageHandler", "pong", pong, "nodeID", node.Consensus.GetNodeID())
peers := make([]*p2p.Peer, 0)
for _, p := range pong.Peers {
peer := new(p2p.Peer)
peer.IP = p.IP
peer.Port = p.Port
peer.ValidatorID = p.ValidatorID
peer.PeerID = p.PeerID
peer.PubKey = hmy_crypto.Ed25519Curve.Point()
err = peer.PubKey.UnmarshalBinary(p.PubKey[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed", "error", err)
continue
}
peers = append(peers, peer)
}
if len(peers) > 0 {
node.AddPeers(peers)
}
// Reset Validator PublicKeys every time we receive PONG message from Leader
// The PublicKeys has to be idential across the shard on every node
// TODO (lc): we need to handle RemovePeer situation
publicKeys := make([]kyber.Point, 0)
// Create the the PubKey from the []byte sent from leader
for _, k := range pong.PubKeys {
key := hmy_crypto.Ed25519Curve.Point()
err = key.UnmarshalBinary(k[:])
if err != nil {
node.log.Error("UnmarshalBinary Failed PubKeys", "error", err)
continue
}
publicKeys = append(publicKeys, key)
}
if node.State == NodeWaitToJoin {
node.State = NodeJoinedShard
// Notify JoinShard to stop sending Ping messages
if node.StopPing != nil {
node.StopPing <- struct{}{}
}
}
return node.Consensus.UpdatePublicKeys(publicKeys)
}