The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/blockchain.go

2667 lines
90 KiB

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package core implements the Ethereum consensus protocol.
package core
import (
"bytes"
"fmt"
"io"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/consensus/votepower"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/numeric"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
lru "github.com/hashicorp/golang-lru"
"github.com/pkg/errors"
)
var (
// blockInsertTimer
blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil)
// ErrNoGenesis is the error when there is no genesis.
ErrNoGenesis = errors.New("Genesis not found in chain")
)
const (
bodyCacheLimit = 256
blockCacheLimit = 256
receiptsCacheLimit = 32
maxFutureBlocks = 256
maxTimeFutureBlocks = 30
badBlockLimit = 10
triesInMemory = 128
shardCacheLimit = 10
commitsCacheLimit = 10
epochCacheLimit = 10
randomnessCacheLimit = 10
validatorCacheLimit = 1024
validatorStatsCacheLimit = 1024
validatorListCacheLimit = 10
validatorListByDelegatorCacheLimit = 1024
pendingCrossLinksCacheLimit = 2
blockAccumulatorCacheLimit = 256
pendingSlashingCandidateCacheLimit = 2
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
BlockChainVersion = 3
)
const (
pendingCLCacheKey = "pendingCLs"
pendingSCCacheKey = "pendingSCs"
)
// CacheConfig contains the configuration values for the trie caching/pruning
// that's resident in a blockchain.
type CacheConfig struct {
Disabled bool // Whether to disable trie write caching (archive node)
TrieNodeLimit int // Memory limit (MB) at which to flush the current in-memory trie to disk
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
}
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
chainConfig *params.ChainConfig // Chain & network configuration
cacheConfig *CacheConfig // Cache configuration for pruning
db ethdb.Database // Low level persistent database to store final content in
triegc *prque.Prque // Priority queue mapping block numbers to tries to gc
gcproc time.Duration // Accumulates canonical block processing for trie dumping
hc *HeaderChain
rmLogsFeed event.Feed
chainFeed event.Feed
chainSideFeed event.Feed
chainHeadFeed event.Feed
logsFeed event.Feed
scope event.SubscriptionScope
genesisBlock *types.Block
mu sync.RWMutex // global mutex for locking chain operations
chainmu sync.RWMutex // blockchain insertion lock
procmu sync.RWMutex // block processor lock
pendingCrossLinksMutex sync.RWMutex // pending crosslinks lock
pendingSlashingCandidatesMU sync.RWMutex // pending slashing candidates
checkpoint int // checkpoint counts towards the new checkpoint
currentBlock atomic.Value // Current head of the block chain
currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!)
stateCache state.Database // State database to reuse between imports (contains state cache)
bodyCache *lru.Cache // Cache for the most recent block bodies
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
receiptsCache *lru.Cache // Cache for the most recent receipts per block
blockCache *lru.Cache // Cache for the most recent entire blocks
futureBlocks *lru.Cache // future blocks are blocks added for later processing
shardStateCache *lru.Cache
lastCommitsCache *lru.Cache
epochCache *lru.Cache // Cache epoch number → first block number
randomnessCache *lru.Cache // Cache for vrf/vdf
validatorCache *lru.Cache // Cache for validator info
validatorStatsCache *lru.Cache // Cache for validator stats
validatorListCache *lru.Cache // Cache of validator list
validatorListByDelegatorCache *lru.Cache // Cache of validator list by delegator
pendingCrossLinksCache *lru.Cache // Cache of last pending crosslinks
blockAccumulatorCache *lru.Cache // Cache of block accumulators
pendingSlashingCandidates *lru.Cache // Cache of last pending slashing candidates
quit chan struct{} // blockchain quit channel
running int32 // running must be called atomically
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
wg sync.WaitGroup // chain processing wait group for shutting down
engine consensus_engine.Engine
processor Processor // block processor interface
validator Validator // block and state validator interface
vmConfig vm.Config
badBlocks *lru.Cache // Bad block cache
shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block.
}
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum Validator and
// Processor.
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus_engine.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) {
if cacheConfig == nil {
cacheConfig = &CacheConfig{
TrieNodeLimit: 256 * 1024 * 1024,
TrieTimeLimit: 2 * time.Minute,
}
}
bodyCache, _ := lru.New(bodyCacheLimit)
bodyRLPCache, _ := lru.New(bodyCacheLimit)
receiptsCache, _ := lru.New(receiptsCacheLimit)
blockCache, _ := lru.New(blockCacheLimit)
futureBlocks, _ := lru.New(maxFutureBlocks)
badBlocks, _ := lru.New(badBlockLimit)
shardCache, _ := lru.New(shardCacheLimit)
commitsCache, _ := lru.New(commitsCacheLimit)
epochCache, _ := lru.New(epochCacheLimit)
randomnessCache, _ := lru.New(randomnessCacheLimit)
validatorCache, _ := lru.New(validatorCacheLimit)
validatorStatsCache, _ := lru.New(validatorStatsCacheLimit)
validatorListCache, _ := lru.New(validatorListCacheLimit)
validatorListByDelegatorCache, _ := lru.New(validatorListByDelegatorCacheLimit)
pendingCrossLinksCache, _ := lru.New(pendingCrossLinksCacheLimit)
blockAccumulatorCache, _ := lru.New(blockAccumulatorCacheLimit)
pendingSlashingCandidateCache, _ := lru.New(pendingSlashingCandidateCacheLimit)
bc := &BlockChain{
chainConfig: chainConfig,
cacheConfig: cacheConfig,
db: db,
triegc: prque.New(nil),
stateCache: state.NewDatabase(db),
quit: make(chan struct{}),
shouldPreserve: shouldPreserve,
bodyCache: bodyCache,
bodyRLPCache: bodyRLPCache,
receiptsCache: receiptsCache,
blockCache: blockCache,
futureBlocks: futureBlocks,
shardStateCache: shardCache,
lastCommitsCache: commitsCache,
epochCache: epochCache,
randomnessCache: randomnessCache,
validatorCache: validatorCache,
validatorStatsCache: validatorStatsCache,
validatorListCache: validatorListCache,
validatorListByDelegatorCache: validatorListByDelegatorCache,
pendingCrossLinksCache: pendingCrossLinksCache,
pendingSlashingCandidates: pendingSlashingCandidateCache,
blockAccumulatorCache: blockAccumulatorCache,
engine: engine,
vmConfig: vmConfig,
badBlocks: badBlocks,
}
bc.SetValidator(NewBlockValidator(chainConfig, bc, engine))
bc.SetProcessor(NewStateProcessor(chainConfig, bc, engine))
var err error
bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt)
if err != nil {
return nil, err
}
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
return nil, ErrNoGenesis
}
if err := bc.loadLastState(); err != nil {
return nil, err
}
// Take ownership of this particular state
go bc.update()
return bc, nil
}
// ValidateNewBlock validates new block.
func (bc *BlockChain) ValidateNewBlock(block *types.Block) error {
state, err := state.New(bc.CurrentBlock().Root(), bc.stateCache)
if err != nil {
return err
}
// NOTE Order of mutating state here matters.
// Process block using the parent state as reference point.
receipts, cxReceipts, _, usedGas, _, err := bc.processor.Process(
block, state, bc.vmConfig,
)
if err != nil {
bc.reportBlock(block, receipts, err)
return err
}
if err := bc.Validator().ValidateState(
block, state, receipts, cxReceipts, usedGas,
); err != nil {
bc.reportBlock(block, receipts, err)
return err
}
return nil
}
// IsEpochBlock returns whether this block is the first block of an epoch.
// by checking if the previous block is the last block of the previous epoch
func IsEpochBlock(block *types.Block) bool {
if block.NumberU64() == 0 {
// genesis block is the first epoch block
return true
}
return shard.Schedule.IsLastBlock(block.NumberU64() - 1)
}
// EpochFirstBlock returns the block number of the first block of an epoch.
// TODO: instead of using fixed epoch schedules, determine the first block by epoch changes.
func EpochFirstBlock(epoch *big.Int) *big.Int {
if epoch.Cmp(big.NewInt(GenesisEpoch)) == 0 {
return big.NewInt(GenesisEpoch)
}
return big.NewInt(int64(shard.Schedule.EpochLastBlock(epoch.Uint64()-1) + 1))
}
func (bc *BlockChain) getProcInterrupt() bool {
return atomic.LoadInt32(&bc.procInterrupt) == 1
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (bc *BlockChain) loadLastState() error {
// Restore the last known head block
head := rawdb.ReadHeadBlockHash(bc.db)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Msg("Empty database, resetting chain")
return bc.Reset()
}
// Make sure the entire head block is available
currentBlock := bc.GetBlockByHash(head)
if currentBlock == nil {
// Corrupt or empty database, init from scratch
utils.Logger().Warn().Str("hash", head.Hex()).Msg("Head block missing, resetting chain")
return bc.Reset()
}
// Make sure the state associated with the block is available
if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
// Dangling block without a state associated, init from scratch
utils.Logger().Warn().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Msg("Head state missing, repairing chain")
if err := bc.repair(&currentBlock); err != nil {
return err
}
}
// Everything seems to be fine, set as the head block
bc.currentBlock.Store(currentBlock)
// We don't need the following as we want the current header and block to be consistent
// Restore the last known head header
//currentHeader := currentBlock.Header()
//if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
// if header := bc.GetHeaderByHash(head); header != nil {
// currentHeader = header
// }
//}
utils.Logger().Info().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Msg("Head state missing, repairing chain")
currentHeader := currentBlock.Header()
bc.hc.SetCurrentHeader(currentHeader)
// Restore the last known head fast block
bc.currentFastBlock.Store(currentBlock)
if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
if block := bc.GetBlockByHash(head); block != nil {
bc.currentFastBlock.Store(block)
}
}
// Issue a status log for the user
currentFastBlock := bc.CurrentFastBlock()
headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number().Uint64())
blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64())
utils.Logger().Info().
Str("number", currentHeader.Number().String()).
Str("hash", currentHeader.Hash().Hex()).
Str("td", headerTd.String()).
Str("age", common.PrettyAge(time.Unix(currentHeader.Time().Int64(), 0)).String()).
Msg("Loaded most recent local header")
utils.Logger().Info().
Str("number", currentBlock.Number().String()).
Str("hash", currentBlock.Hash().Hex()).
Str("td", blockTd.String()).
Str("age", common.PrettyAge(time.Unix(currentBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local full block")
utils.Logger().Info().
Str("number", currentFastBlock.Number().String()).
Str("hash", currentFastBlock.Hash().Hex()).
Str("td", fastTd.String()).
Str("age", common.PrettyAge(time.Unix(currentFastBlock.Time().Int64(), 0)).String()).
Msg("Loaded most recent local fast block")
return nil
}
// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func (bc *BlockChain) SetHead(head uint64) error {
utils.Logger().Warn().Uint64("target", head).Msg("Rewinding blockchain")
bc.mu.Lock()
defer bc.mu.Unlock()
// Rewind the header chain, deleting all block bodies until then
delFn := func(db rawdb.DatabaseDeleter, hash common.Hash, num uint64) {
rawdb.DeleteBody(db, hash, num)
}
bc.hc.SetHead(head, delFn)
currentHeader := bc.hc.CurrentHeader()
// Clear out any stale content from the caches
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.receiptsCache.Purge()
bc.blockCache.Purge()
bc.futureBlocks.Purge()
bc.shardStateCache.Purge()
// Rewind the block chain, ensuring we don't end up with a stateless head block
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number().Uint64() < currentBlock.NumberU64() {
bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64()))
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil {
if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil {
// Rewound state missing, rolled back to before pivot, reset to genesis
bc.currentBlock.Store(bc.genesisBlock)
}
}
// Rewind the fast block in a simpleton way to the target head
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number().Uint64() < currentFastBlock.NumberU64() {
bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number().Uint64()))
}
// If either blocks reached nil, reset to the genesis state
if currentBlock := bc.CurrentBlock(); currentBlock == nil {
bc.currentBlock.Store(bc.genesisBlock)
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil {
bc.currentFastBlock.Store(bc.genesisBlock)
}
currentBlock := bc.CurrentBlock()
currentFastBlock := bc.CurrentFastBlock()
rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash())
rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash())
return bc.loadLastState()
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := bc.GetBlockByHash(hash)
if block == nil {
return fmt.Errorf("non existent block [%x…]", hash[:4])
}
if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB(), 0); err != nil {
return err
}
// If all checks out, manually set the head block
bc.mu.Lock()
bc.currentBlock.Store(block)
bc.mu.Unlock()
utils.Logger().Info().
Str("number", block.Number().String()).
Str("hash", hash.Hex()).
Msg("Committed new head block")
return nil
}
// ShardID returns the shard Id of the blockchain.
// TODO: use a better solution before resharding shuffle nodes to different shards
func (bc *BlockChain) ShardID() uint32 {
return bc.CurrentBlock().ShardID()
}
// GasLimit returns the gas limit of the current HEAD block.
func (bc *BlockChain) GasLimit() uint64 {
return bc.CurrentBlock().GasLimit()
}
// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentBlock() *types.Block {
return bc.currentBlock.Load().(*types.Block)
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (bc *BlockChain) CurrentFastBlock() *types.Block {
return bc.currentFastBlock.Load().(*types.Block)
}
// SetProcessor sets the processor required for making state modifications.
func (bc *BlockChain) SetProcessor(processor Processor) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.processor = processor
}
// SetValidator sets the validator which is used to validate incoming blocks.
func (bc *BlockChain) SetValidator(validator Validator) {
bc.procmu.Lock()
defer bc.procmu.Unlock()
bc.validator = validator
}
// Validator returns the current validator.
func (bc *BlockChain) Validator() Validator {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.validator
}
// Processor returns the current processor.
func (bc *BlockChain) Processor() Processor {
bc.procmu.RLock()
defer bc.procmu.RUnlock()
return bc.processor
}
// State returns a new mutable state based on the current HEAD block.
func (bc *BlockChain) State() (*state.DB, error) {
return bc.StateAt(bc.CurrentBlock().Root())
}
// StateAt returns a new mutable state based on a particular point in time.
func (bc *BlockChain) StateAt(root common.Hash) (*state.DB, error) {
return state.New(root, bc.stateCache)
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() error {
return bc.ResetWithGenesisBlock(bc.genesisBlock)
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
// Dump the entire block chain and purge the caches
if err := bc.SetHead(0); err != nil {
return err
}
bc.mu.Lock()
defer bc.mu.Unlock()
// Prepare the genesis block and reinitialise the chain
rawdb.WriteBlock(bc.db, genesis)
bc.genesisBlock = genesis
bc.insert(bc.genesisBlock)
bc.currentBlock.Store(bc.genesisBlock)
bc.hc.SetGenesis(bc.genesisBlock.Header())
bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
bc.currentFastBlock.Store(bc.genesisBlock)
return nil
}
// repair tries to repair the current blockchain by rolling back the current block
// until one with associated state is found. This is needed to fix incomplete db
// writes caused either by crashes/power outages, or simply non-committed tries.
//
// This method only rolls back the current block. The current header and current
// fast block are left intact.
func (bc *BlockChain) repair(head **types.Block) error {
for {
// Abort if we've rewound to a head block that does have associated state
if _, err := state.New((*head).Root(), bc.stateCache); err == nil {
utils.Logger().Info().
Str("number", (*head).Number().String()).
Str("hash", (*head).Hash().Hex()).
Msg("Rewound blockchain to past state")
return nil
}
// Repair last commit sigs
lastSig := (*head).Header().LastCommitSignature()
sigAndBitMap := append(lastSig[:], (*head).Header().LastCommitBitmap()...)
bc.WriteLastCommits(sigAndBitMap)
// Otherwise rewind one block and recheck state availability there
(*head) = bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1)
}
}
// Export writes the active chain to the given writer.
func (bc *BlockChain) Export(w io.Writer) error {
return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64())
}
// ExportN writes a subset of the active chain to the given writer.
func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
bc.mu.RLock()
defer bc.mu.RUnlock()
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
utils.Logger().Info().Uint64("count", last-first+1).Msg("Exporting batch of blocks")
start, reported := time.Now(), time.Now()
for nr := first; nr <= last; nr++ {
block := bc.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if err := block.EncodeRLP(w); err != nil {
return err
}
if time.Since(reported) >= statsReportLimit {
utils.Logger().Info().
Uint64("exported", block.NumberU64()-first).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Msg("Exporting blocks")
reported = time.Now()
}
}
return nil
}
// similar to insert, but add to the db writer.
func (bc *BlockChain) insertWithWriter(batch rawdb.DatabaseWriter, block *types.Block) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64())
rawdb.WriteHeadBlockHash(batch, block.Hash())
bc.currentBlock.Store(block)
// If the block is better than our head or is on a different chain, force update heads
if updateHeads {
bc.hc.SetCurrentHeader(block.Header())
rawdb.WriteHeadFastBlockHash(batch, block.Hash())
bc.currentFastBlock.Store(block)
}
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) insert(block *types.Block) {
bc.insertWithWriter(bc.db, block)
}
// Genesis retrieves the chain's genesis block.
func (bc *BlockChain) Genesis() *types.Block {
return bc.genesisBlock
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (bc *BlockChain) GetBody(hash common.Hash) *types.Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyCache.Get(hash); ok {
body := cached.(*types.Body)
return body
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBody(bc.db, hash, *number)
if body == nil {
return nil
}
// Cache the found body for next time and return
bc.bodyCache.Add(hash, body)
return body
}
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := bc.bodyRLPCache.Get(hash); ok {
return cached.(rlp.RawValue)
}
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
body := rawdb.ReadBodyRLP(bc.db, hash, *number)
if len(body) == 0 {
return nil
}
// Cache the found body for next time and return
bc.bodyRLPCache.Add(hash, body)
return body
}
// HasBlock checks if a block is fully present in the database or not.
func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool {
if bc.blockCache.Contains(hash) {
return true
}
return rawdb.HasBody(bc.db, hash, number)
}
// HasState checks if state trie is fully present in the database or not.
func (bc *BlockChain) HasState(hash common.Hash) bool {
_, err := bc.stateCache.OpenTrie(hash)
return err == nil
}
// HasBlockAndState checks if a block and associated state trie is fully present
// in the database or not, caching it if present.
func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool {
// Check first that the block itself is known
block := bc.GetBlock(hash, number)
if block == nil {
return false
}
return bc.HasState(block.Root())
}
// GetBlock retrieves a block from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block, ok := bc.blockCache.Get(hash); ok {
return block.(*types.Block)
}
block := rawdb.ReadBlock(bc.db, hash, number)
if block == nil {
return nil
}
// Cache the found block for next time and return
bc.blockCache.Add(block.Hash(), block)
return block
}
// GetBlockByHash retrieves a block from the database by hash, caching it if found.
func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
return bc.GetBlock(hash, *number)
}
// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block {
hash := rawdb.ReadCanonicalHash(bc.db, number)
if hash == (common.Hash{}) {
return nil
}
return bc.GetBlock(hash, number)
}
// GetReceiptsByHash retrieves the receipts for all transactions in a given block.
func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts {
if receipts, ok := bc.receiptsCache.Get(hash); ok {
return receipts.(types.Receipts)
}
number := rawdb.ReadHeaderNumber(bc.db, hash)
if number == nil {
return nil
}
receipts := rawdb.ReadReceipts(bc.db, hash, *number)
bc.receiptsCache.Add(hash, receipts)
return receipts
}
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
// [deprecated by eth/62]
func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
number := bc.hc.GetBlockNumber(hash)
if number == nil {
return nil
}
for i := 0; i < n; i++ {
block := bc.GetBlock(hash, *number)
if block == nil {
break
}
blocks = append(blocks, block)
hash = block.ParentHash()
*number--
}
return
}
// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func (bc *BlockChain) GetUnclesInChain(b *types.Block, length int) []*block.Header {
uncles := []*block.Header{}
for i := 0; b != nil && i < length; i++ {
uncles = append(uncles, b.Uncles()...)
b = bc.GetBlock(b.ParentHash(), b.NumberU64()-1)
}
return uncles
}
// TrieNode retrieves a blob of data associated with a trie node (or code hash)
// either from ephemeral in-memory cache, or from persistent storage.
func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) {
return bc.stateCache.TrieDB().Node(hash)
}
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
return
}
// Unsubscribe all subscriptions registered from blockchain
bc.scope.Close()
close(bc.quit)
atomic.StoreInt32(&bc.procInterrupt, 1)
bc.wg.Wait()
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
// - HEAD-127: So we have a hard limit on the number of blocks reexecuted
if !bc.cacheConfig.Disabled {
triedb := bc.stateCache.TrieDB()
for _, offset := range []uint64{0, 1, triesInMemory - 1} {
if number := bc.CurrentBlock().NumberU64(); number > offset {
recent := bc.GetHeaderByNumber(number - offset)
utils.Logger().Info().
Str("block", recent.Number().String()).
Str("hash", recent.Hash().Hex()).
Str("root", recent.Root().Hex()).
Msg("Writing cached state to disk")
if err := triedb.Commit(recent.Root(), true); err != nil {
utils.Logger().Error().Err(err).Msg("Failed to commit recent state trie")
}
}
}
for !bc.triegc.Empty() {
triedb.Dereference(bc.triegc.PopItem().(common.Hash))
}
if size, _ := triedb.Size(); size != 0 {
utils.Logger().Error().Msg("Dangling trie nodes after full cleanup")
}
}
utils.Logger().Info().Msg("Blockchain manager stopped")
}
func (bc *BlockChain) procFutureBlocks() {
blocks := make([]*types.Block, 0, bc.futureBlocks.Len())
for _, hash := range bc.futureBlocks.Keys() {
if block, exist := bc.futureBlocks.Peek(hash); exist {
blocks = append(blocks, block.(*types.Block))
}
}
if len(blocks) > 0 {
types.BlockBy(types.Number).Sort(blocks)
// Insert one by one as chain insertion needs contiguous ancestry between blocks
for i := range blocks {
bc.InsertChain(blocks[i:i+1], true /* verifyHeaders */)
}
}
}
// WriteStatus status of write
type WriteStatus byte
// Constants for WriteStatus
const (
NonStatTy WriteStatus = iota
CanonStatTy
SideStatTy
)
// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func (bc *BlockChain) Rollback(chain []common.Hash) {
bc.mu.Lock()
defer bc.mu.Unlock()
for i := len(chain) - 1; i >= 0; i-- {
hash := chain[i]
currentHeader := bc.hc.CurrentHeader()
if currentHeader != nil && currentHeader.Hash() == hash {
parentHeader := bc.GetHeader(currentHeader.ParentHash(), currentHeader.Number().Uint64()-1)
if parentHeader != nil {
bc.hc.SetCurrentHeader(parentHeader)
}
}
if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentFastBlock.Hash() == hash {
newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1)
if newFastBlock != nil {
bc.currentFastBlock.Store(newFastBlock)
rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash())
}
}
if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentBlock.Hash() == hash {
newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1)
if newBlock != nil {
bc.currentBlock.Store(newBlock)
rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash())
}
}
}
}
// SetReceiptsData computes all the non-consensus fields of the receipts
func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) error {
signer := types.MakeSigner(config, block.Epoch())
transactions, logIndex := block.Transactions(), uint(0)
if len(transactions) != len(receipts) {
return errors.New("transaction and receipt count mismatch")
}
for j := 0; j < len(receipts); j++ {
// The transaction hash can be retrieved from the transaction itself
receipts[j].TxHash = transactions[j].Hash()
// The contract address can be derived from the transaction itself
if transactions[j].To() == nil {
// Deriving the signer is expensive, only do if it's actually needed
from, _ := types.Sender(signer, transactions[j])
receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
}
// The used gas can be calculated based on previous receipts
if j == 0 {
receipts[j].GasUsed = receipts[j].CumulativeGasUsed
} else {
receipts[j].GasUsed = receipts[j].CumulativeGasUsed - receipts[j-1].CumulativeGasUsed
}
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j)
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
return nil
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
bc.wg.Add(1)
defer bc.wg.Done()
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(blockChain); i++ {
if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() {
utils.Logger().Error().
Str("number", blockChain[i].Number().String()).
Str("hash", blockChain[i].Hash().Hex()).
Str("parent", blockChain[i].ParentHash().Hex()).
Str("prevnumber", blockChain[i-1].Number().String()).
Str("prevhash", blockChain[i-1].Hash().Hex()).
Msg("Non contiguous receipt insert")
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(),
blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4])
}
}
var (
stats = struct{ processed, ignored int32 }{}
start = time.Now()
bytes = 0
batch = bc.db.NewBatch()
)
for i, block := range blockChain {
receipts := receiptChain[i]
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
return 0, nil
}
// Short circuit if the owner header is unknown
if !bc.HasHeader(block.Hash(), block.NumberU64()) {
return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
}
// Skip if the entire data is already known
if bc.HasBlock(block.Hash(), block.NumberU64()) {
stats.ignored++
continue
}
// Compute all the non-consensus fields of the receipts
if err := SetReceiptsData(bc.chainConfig, block, receipts); err != nil {
return i, fmt.Errorf("failed to set receipts data: %v", err)
}
// Write all the data out into the database
rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts)
rawdb.WriteTxLookupEntries(batch, block)
stats.processed++
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return 0, err
}
bytes += batch.ValueSize()
batch.Reset()
}
}
if batch.ValueSize() > 0 {
bytes += batch.ValueSize()
if err := batch.Write(); err != nil {
return 0, err
}
}
// Update the head fast sync block if better
bc.mu.Lock()
head := blockChain[len(blockChain)-1]
if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case
currentFastBlock := bc.CurrentFastBlock()
if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 {
rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
bc.currentFastBlock.Store(head)
}
}
bc.mu.Unlock()
utils.Logger().Info().
Int32("count", stats.processed).
Str("elapsed", common.PrettyDuration(time.Since(start)).String()).
Str("age", common.PrettyAge(time.Unix(head.Time().Int64(), 0)).String()).
Str("head", head.Number().String()).
Str("hash", head.Hash().Hex()).
Str("size", common.StorageSize(bytes).String()).
Int32("ignored", stats.ignored).
Msg("Imported new block receipts")
return 0, nil
}
var lastWrite uint64
// WriteBlockWithoutState writes only the block and its metadata to the database,
// but does not write any state. This is used to construct competing side forks
// up to the point where they exceed the canonical total difficulty.
func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) {
bc.wg.Add(1)
defer bc.wg.Done()
if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil {
return err
}
rawdb.WriteBlock(bc.db, block)
return nil
}
// WriteBlockWithState writes the block and all associated state to the database.
func (bc *BlockChain) WriteBlockWithState(
block *types.Block, receipts []*types.Receipt,
cxReceipts []*types.CXReceipt, payout *big.Int, state *state.DB,
) (status WriteStatus, err error) {
bc.wg.Add(1)
defer bc.wg.Done()
// Make sure no inconsistent state is leaked during insertion
bc.mu.Lock()
defer bc.mu.Unlock()
currentBlock := bc.CurrentBlock()
if currentBlock == nil || block.ParentHash() != currentBlock.Hash() {
return NonStatTy, errors.New("Hash of parent block doesn't match the current block hash")
}
// Commit state object changes to in-memory trie
root, err := state.Commit(bc.chainConfig.IsS3(block.Epoch()))
if err != nil {
return NonStatTy, err
}
// Flush trie state into disk if it's archival node or the block is epoch block
triedb := bc.stateCache.TrieDB()
if bc.cacheConfig.Disabled || len(block.Header().ShardState()) > 0 {
if err := triedb.Commit(root, false); err != nil {
return NonStatTy, err
}
} else {
// Full but not archive node, do proper garbage collection
triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
bc.triegc.Push(root, -int64(block.NumberU64()))
if current := block.NumberU64(); current > triesInMemory {
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
nodes, imgs = triedb.Size()
limit = common.StorageSize(bc.cacheConfig.TrieNodeLimit) * 1024 * 1024
)
if nodes > limit || imgs > 4*1024*1024 {
triedb.Cap(limit - ethdb.IdealBatchSize)
}
// Find the next state trie we need to commit
header := bc.GetHeaderByNumber(current - triesInMemory)
chosen := header.Number().Uint64()
// If we exceeded out time allowance, flush an entire trie to disk
if bc.gcproc > bc.cacheConfig.TrieTimeLimit {
// If we're exceeding limits but haven't reached a large enough memory gap,
// warn the user that the system is becoming unstable.
if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit {
utils.Logger().Info().
Dur("time", bc.gcproc).
Dur("allowance", bc.cacheConfig.TrieTimeLimit).
Float64("optimum", float64(chosen-lastWrite)/triesInMemory).
Msg("State in memory for too long, committing")
}
// Flush an entire trie and restart the counters
triedb.Commit(header.Root(), true)
lastWrite = chosen
bc.gcproc = 0
}
// Garbage collect anything below our required write retention
for !bc.triegc.Empty() {
root, number := bc.triegc.Pop()
if uint64(-number) > chosen {
bc.triegc.Push(root, number)
break
}
triedb.Dereference(root.(common.Hash))
}
}
}
batch := bc.db.NewBatch()
// Write the raw block
rawdb.WriteBlock(batch, block)
// Write offchain data
if status, err := bc.CommitOffChainData(
batch, block, receipts,
cxReceipts, payout, state, root); err != nil {
return status, err
}
// Write the positional metadata for transaction/receipt lookups and preimages
rawdb.WriteTxLookupEntries(batch, block)
rawdb.WriteCxLookupEntries(batch, block)
rawdb.WritePreimages(batch, block.NumberU64(), state.Preimages())
// Update current block
bc.insertWithWriter(batch, block)
if err := batch.Write(); err != nil {
return NonStatTy, err
}
bc.futureBlocks.Remove(block.Hash())
return CanonStatTy, nil
}
// InsertChain attempts to insert the given batch of blocks in to the canonical
// chain or, otherwise, create a fork. If an error is returned it will return
// the index number of the failing block as well an error describing what went
// wrong.
//
// After insertion is done, all accumulated events will be fired.
func (bc *BlockChain) InsertChain(chain types.Blocks, verifyHeaders bool) (int, error) {
n, events, logs, err := bc.insertChain(chain, verifyHeaders)
bc.PostChainEvents(events, logs)
return n, err
}
// insertChain will execute the actual chain insertion and event aggregation. The
// only reason this method exists as a separate one is to make locking cleaner
// with deferred statements.
func (bc *BlockChain) insertChain(chain types.Blocks, verifyHeaders bool) (int, []interface{}, []*types.Log, error) {
// Sanity check that we have something meaningful to import
if len(chain) == 0 {
return 0, nil, nil, nil
}
// Do a sanity check that the provided chain is actually ordered and linked
for i := 1; i < len(chain); i++ {
if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() {
// Chain broke ancestry, log a message (programming error) and skip insertion
utils.Logger().Error().
Str("number", chain[i].Number().String()).
Str("hash", chain[i].Hash().Hex()).
Str("parent", chain[i].ParentHash().Hex()).
Str("prevnumber", chain[i-1].Number().String()).
Str("prevhash", chain[i-1].Hash().Hex()).
Msg("insertChain: non contiguous block insert")
return 0, nil, nil, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(),
chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4])
}
}
// Pre-checks passed, start the full block imports
bc.wg.Add(1)
defer bc.wg.Done()
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
var (
stats = insertStats{startTime: mclock.Now()}
events = make([]interface{}, 0, len(chain))
lastCanon *types.Block
coalescedLogs []*types.Log
)
var verifyHeadersResults <-chan error
// If the block header chain has not been verified, conduct header verification here.
if verifyHeaders {
headers := make([]*block.Header, len(chain))
seals := make([]bool, len(chain))
for i, block := range chain {
headers[i] = block.Header()
seals[i] = true
}
// Note that VerifyHeaders verifies headers in the chain in parallel
abort, results := bc.Engine().VerifyHeaders(bc, headers, seals)
verifyHeadersResults = results
defer close(abort)
}
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
//senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain)
// Iterate over the blocks and insert when the verifier permits
for i, block := range chain {
// If the chain is terminating, stop processing blocks
if atomic.LoadInt32(&bc.procInterrupt) == 1 {
utils.Logger().Debug().Msg("Premature abort during blocks processing")
break
}
// Wait for the block's verification to complete
bstart := time.Now()
var err error
if verifyHeaders {
err = <-verifyHeadersResults
}
if err == nil {
err = bc.Validator().ValidateBody(block)
}
switch {
case err == ErrKnownBlock:
// Block and state both already known. However if the current block is below
// this number we did a rollback and we should reimport it nonetheless.
if bc.CurrentBlock().NumberU64() >= block.NumberU64() {
stats.ignored++
continue
}
case err == consensus_engine.ErrFutureBlock:
// Allow up to MaxFuture second in the future blocks. If this limit is exceeded
// the chain is discarded and processed at a later time if given.
max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks)
if block.Time().Cmp(max) > 0 {
return i, events, coalescedLogs, fmt.Errorf("future block: %v > %v", block.Time(), max)
}
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrUnknownAncestor && bc.futureBlocks.Contains(block.ParentHash()):
bc.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
case err == consensus_engine.ErrPrunedAncestor:
// TODO: add fork choice mechanism
// Block competing with the canonical chain, store in the db, but don't process
// until the competitor TD goes above the canonical TD
//currentBlock := bc.CurrentBlock()
//localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64())
//externTd := new(big.Int).Add(bc.GetTd(block.ParentHash(), block.NumberU64()-1), block.Difficulty())
//if localTd.Cmp(externTd) > 0 {
// if err = bc.WriteBlockWithoutState(block, externTd); err != nil {
// return i, events, coalescedLogs, err
// }
// continue
//}
// Competitor chain beat canonical, gather all blocks from the common ancestor
var winner []*types.Block
parent := bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
for parent != nil && !bc.HasState(parent.Root()) {
winner = append(winner, parent)
parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
}
for j := 0; j < len(winner)/2; j++ {
winner[j], winner[len(winner)-1-j] = winner[len(winner)-1-j], winner[j]
}
// Prune in case non-empty winner chain
if len(winner) > 0 {
// Import all the pruned blocks to make the state available
bc.chainmu.Unlock()
_, evs, logs, err := bc.insertChain(winner, true /* verifyHeaders */)
bc.chainmu.Lock()
events, coalescedLogs = evs, logs
if err != nil {
return i, events, coalescedLogs, err
}
}
case err != nil:
bc.reportBlock(block, nil, err)
return i, events, coalescedLogs, err
}
// Create a new statedb using the parent block and report an
// error if it fails.
var parent *types.Block
if i == 0 {
parent = bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
} else {
parent = chain[i-1]
}
state, err := state.New(parent.Root(), bc.stateCache)
if err != nil {
return i, events, coalescedLogs, err
}
// Process block using the parent state as reference point.
receipts, cxReceipts, logs, usedGas, payout, err := bc.processor.Process(block, state, bc.vmConfig)
if err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
// Validate the state using the default validator
if err := bc.Validator().ValidateState(
block, state, receipts, cxReceipts, usedGas,
); err != nil {
bc.reportBlock(block, receipts, err)
return i, events, coalescedLogs, err
}
proctime := time.Since(bstart)
// Write the block to the chain and get the status.
status, err := bc.WriteBlockWithState(block, receipts, cxReceipts, payout, state)
if err != nil {
return i, events, coalescedLogs, err
}
logger := utils.Logger().With().
Str("number", block.Number().String()).
Str("hash", block.Hash().Hex()).
Int("uncles", len(block.Uncles())).
Int("txs", len(block.Transactions())).
Uint64("gas", block.GasUsed()).
Str("elapsed", common.PrettyDuration(time.Since(bstart)).String()).
Logger()
switch status {
case CanonStatTy:
logger.Info().Msg("Inserted new block")
coalescedLogs = append(coalescedLogs, logs...)
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainEvent{block, block.Hash(), logs})
lastCanon = block
// Only count canonical blocks for GC processing time
bc.gcproc += proctime
}
stats.processed++
stats.usedGas += usedGas
cache, _ := bc.stateCache.TrieDB().Size()
stats.report(chain, i, cache)
}
// Append a single chain head event if we've progressed the chain
if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
events = append(events, ChainHeadEvent{lastCanon})
}
return 0, events, coalescedLogs, nil
}
// insertStats tracks and reports on block insertion.
type insertStats struct {
queued, processed, ignored int
usedGas uint64
lastIndex int
startTime mclock.AbsTime
}
// statsReportLimit is the time limit during import and export after which we
// always print out progress. This avoids the user wondering what's going on.
const statsReportLimit = 8 * time.Second
// report prints statistics if some number of blocks have been processed
// or more than a few seconds have passed since the last message.
func (st *insertStats) report(chain []*types.Block, index int, cache common.StorageSize) {
// Fetch the timings for the batch
var (
now = mclock.Now()
elapsed = time.Duration(now) - time.Duration(st.startTime)
)
// If we're at the last block of the batch or report period reached, log
if index == len(chain)-1 || elapsed >= statsReportLimit {
var (
end = chain[index]
txs = countTransactions(chain[st.lastIndex : index+1])
)
context := utils.Logger().With().
Int("blocks", st.processed).
Int("txs", txs).
Float64("mgas", float64(st.usedGas)/1000000).
Str("elapsed", common.PrettyDuration(elapsed).String()).
Float64("mgasps", float64(st.usedGas)*1000/float64(elapsed)).
Str("number", end.Number().String()).
Str("hash", end.Hash().Hex()).
Str("cache", cache.String())
if timestamp := time.Unix(end.Time().Int64(), 0); time.Since(timestamp) > time.Minute {
context = context.Str("age", common.PrettyAge(timestamp).String())
}
if st.queued > 0 {
context = context.Int("queued", st.queued)
}
if st.ignored > 0 {
context = context.Int("ignored", st.ignored)
}
logger := context.Logger()
logger.Info().Msg("Imported new chain segment")
*st = insertStats{startTime: now, lastIndex: index + 1}
}
}
func countTransactions(chain []*types.Block) (c int) {
for _, b := range chain {
c += len(b.Transactions())
}
return c
}
// PostChainEvents iterates over the events generated by a chain insertion and
// posts them into the event feed.
// TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock.
func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) {
// post event logs for further processing
if logs != nil {
bc.logsFeed.Send(logs)
}
for _, event := range events {
switch ev := event.(type) {
case ChainEvent:
bc.chainFeed.Send(ev)
case ChainHeadEvent:
bc.chainHeadFeed.Send(ev)
case ChainSideEvent:
bc.chainSideFeed.Send(ev)
}
}
}
func (bc *BlockChain) update() {
futureTimer := time.NewTicker(5 * time.Second)
defer futureTimer.Stop()
for {
select {
case <-futureTimer.C:
bc.procFutureBlocks()
case <-bc.quit:
return
}
}
}
// BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network
func (bc *BlockChain) BadBlocks() []*types.Block {
blocks := make([]*types.Block, 0, bc.badBlocks.Len())
for _, hash := range bc.badBlocks.Keys() {
if blk, exist := bc.badBlocks.Peek(hash); exist {
block := blk.(*types.Block)
blocks = append(blocks, block)
}
}
return blocks
}
// addBadBlock adds a bad block to the bad-block LRU cache
func (bc *BlockChain) addBadBlock(block *types.Block) {
bc.badBlocks.Add(block.Hash(), block)
}
// reportBlock logs a bad block error.
func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
bc.addBadBlock(block)
var receiptString string
for _, receipt := range receipts {
receiptString += fmt.Sprintf("\t%v\n", receipt)
}
utils.Logger().Error().Msgf(`
########## BAD BLOCK #########
Chain config: %v
Number: %v
Epoch: %v
NumTxn: %v
NumStkTxn: %v
Hash: 0x%x
%v
Error: %v
##############################
`, bc.chainConfig, block.Number(), block.Epoch(), len(block.Transactions()), len(block.StakingTransactions()), block.Hash(), receiptString, err)
for i, tx := range block.StakingTransactions() {
utils.Logger().Error().Msgf("StakingTxn %d: %s, %v", i, tx.StakingType().String(), tx.StakingMessage())
}
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (bc *BlockChain) InsertHeaderChain(chain []*block.Header, checkFreq int) (int, error) {
start := time.Now()
if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil {
return i, err
}
// Make sure only one thread manipulates the chain at once
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
bc.wg.Add(1)
defer bc.wg.Done()
whFunc := func(header *block.Header) error {
bc.mu.Lock()
defer bc.mu.Unlock()
_, err := bc.hc.WriteHeader(header)
return err
}
return bc.hc.InsertHeaderChain(chain, whFunc, start)
}
// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func (bc *BlockChain) writeHeader(header *block.Header) error {
bc.wg.Add(1)
defer bc.wg.Done()
bc.mu.Lock()
defer bc.mu.Unlock()
_, err := bc.hc.WriteHeader(header)
return err
}
// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the HeaderChain's internal cache.
func (bc *BlockChain) CurrentHeader() *block.Header {
return bc.hc.CurrentHeader()
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int {
return bc.hc.GetTd(hash, number)
}
// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int {
return bc.hc.GetTdByHash(hash)
}
// GetHeader retrieves a block header from the database by hash and number,
// caching it if found.
func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *block.Header {
return bc.hc.GetHeader(hash, number)
}
// GetHeaderByHash retrieves a block header from the database by hash, caching it if
// found.
func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *block.Header {
return bc.hc.GetHeaderByHash(hash)
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool {
return bc.hc.HasHeader(hash, number)
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
return bc.hc.GetBlockHashesFromHash(hash, max)
}
// GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or
// a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the
// number of blocks to be individually checked before we reach the canonical chain.
//
// Note: ancestor == 0 returns the same block, 1 returns its parent and so on.
func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) {
bc.chainmu.Lock()
defer bc.chainmu.Unlock()
return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical)
}
// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (bc *BlockChain) GetHeaderByNumber(number uint64) *block.Header {
return bc.hc.GetHeaderByNumber(number)
}
// Config retrieves the blockchain's chain configuration.
func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig }
// Engine retrieves the blockchain's consensus engine.
func (bc *BlockChain) Engine() consensus_engine.Engine { return bc.engine }
// SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.
func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription {
return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch))
}
// SubscribeChainEvent registers a subscription of ChainEvent.
func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription {
return bc.scope.Track(bc.chainFeed.Subscribe(ch))
}
// SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.
func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch))
}
// SubscribeChainSideEvent registers a subscription of ChainSideEvent.
func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription {
return bc.scope.Track(bc.chainSideFeed.Subscribe(ch))
}
// SubscribeLogsEvent registers a subscription of []*types.Log.
func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription {
return bc.scope.Track(bc.logsFeed.Subscribe(ch))
}
// ReadShardState retrieves sharding state given the epoch number.
func (bc *BlockChain) ReadShardState(epoch *big.Int) (*shard.State, error) {
cacheKey := string(epoch.Bytes())
if cached, ok := bc.shardStateCache.Get(cacheKey); ok {
shardState := cached.(*shard.State)
return shardState, nil
}
shardState, err := rawdb.ReadShardState(bc.db, epoch)
if err != nil {
return nil, err
}
bc.shardStateCache.Add(cacheKey, shardState)
return shardState, nil
}
// WriteShardStateBytes saves the given sharding state under the given epoch number.
func (bc *BlockChain) WriteShardStateBytes(db rawdb.DatabaseWriter,
epoch *big.Int, shardState []byte,
) (*shard.State, error) {
decodeShardState, err := shard.DecodeWrapper(shardState)
if err != nil {
return nil, err
}
err = rawdb.WriteShardStateBytes(db, epoch, shardState)
if err != nil {
return nil, err
}
cacheKey := string(epoch.Bytes())
bc.shardStateCache.Add(cacheKey, decodeShardState)
return decodeShardState, nil
}
// ReadLastCommits retrieves last commits.
func (bc *BlockChain) ReadLastCommits() ([]byte, error) {
if cached, ok := bc.lastCommitsCache.Get("lastCommits"); ok {
lastCommits := cached.([]byte)
return lastCommits, nil
}
lastCommits, err := rawdb.ReadLastCommits(bc.db)
if err != nil {
return nil, err
}
return lastCommits, nil
}
// WriteLastCommits saves the commits of last block.
func (bc *BlockChain) WriteLastCommits(lastCommits []byte) error {
err := rawdb.WriteLastCommits(bc.db, lastCommits)
if err != nil {
return err
}
bc.lastCommitsCache.Add("lastCommits", lastCommits)
return nil
}
// GetVdfByNumber retrieves the rand seed given the block number, return 0 if not exist
func (bc *BlockChain) GetVdfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vdf()
}
// GetVrfByNumber retrieves the randomness preimage given the block number, return 0 if not exist
func (bc *BlockChain) GetVrfByNumber(number uint64) []byte {
header := bc.GetHeaderByNumber(number)
if header == nil {
return []byte{}
}
return header.Vrf()
}
// ChainDb returns the database
func (bc *BlockChain) ChainDb() ethdb.Database { return bc.db }
// GetEpochBlockNumber returns the first block number of the given epoch.
func (bc *BlockChain) GetEpochBlockNumber(epoch *big.Int) (*big.Int, error) {
// Try cache first
cacheKey := string(epoch.Bytes())
if cachedValue, ok := bc.epochCache.Get(cacheKey); ok {
return (&big.Int{}).SetBytes([]byte(cachedValue.(string))), nil
}
blockNum, err := rawdb.ReadEpochBlockNumber(bc.db, epoch)
if err != nil {
return nil, ctxerror.New("cannot read epoch block number from database",
"epoch", epoch,
).WithCause(err)
}
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
return blockNum, nil
}
// StoreEpochBlockNumber stores the given epoch-first block number.
func (bc *BlockChain) StoreEpochBlockNumber(
epoch *big.Int, blockNum *big.Int,
) error {
cacheKey := string(epoch.Bytes())
cachedValue := []byte(blockNum.Bytes())
bc.epochCache.Add(cacheKey, cachedValue)
if err := rawdb.WriteEpochBlockNumber(bc.db, epoch, blockNum); err != nil {
return ctxerror.New("cannot write epoch block number to database",
"epoch", epoch,
"epochBlockNum", blockNum,
).WithCause(err)
}
return nil
}
// ReadEpochVrfBlockNums retrieves block numbers with valid VRF for the specified epoch
func (bc *BlockChain) ReadEpochVrfBlockNums(epoch *big.Int) ([]uint64, error) {
vrfNumbers := []uint64{}
if cached, ok := bc.randomnessCache.Get("vrf-" + string(epoch.Bytes())); ok {
encodedVrfNumbers := cached.([]byte)
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
encodedVrfNumbers, err := rawdb.ReadEpochVrfBlockNums(bc.db, epoch)
if err != nil {
return nil, err
}
if err := rlp.DecodeBytes(encodedVrfNumbers, &vrfNumbers); err != nil {
return nil, err
}
return vrfNumbers, nil
}
// WriteEpochVrfBlockNums saves block numbers with valid VRF for the specified epoch
func (bc *BlockChain) WriteEpochVrfBlockNums(epoch *big.Int, vrfNumbers []uint64) error {
encodedVrfNumbers, err := rlp.EncodeToBytes(vrfNumbers)
if err != nil {
return err
}
err = rawdb.WriteEpochVrfBlockNums(bc.db, epoch, encodedVrfNumbers)
if err != nil {
return err
}
bc.randomnessCache.Add("vrf-"+string(epoch.Bytes()), encodedVrfNumbers)
return nil
}
// ReadEpochVdfBlockNum retrieves block number with valid VDF for the specified epoch
func (bc *BlockChain) ReadEpochVdfBlockNum(epoch *big.Int) (*big.Int, error) {
if cached, ok := bc.randomnessCache.Get("vdf-" + string(epoch.Bytes())); ok {
encodedVdfNumber := cached.([]byte)
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
encodedVdfNumber, err := rawdb.ReadEpochVdfBlockNum(bc.db, epoch)
if err != nil {
return nil, err
}
return new(big.Int).SetBytes(encodedVdfNumber), nil
}
// WriteEpochVdfBlockNum saves block number with valid VDF for the specified epoch
func (bc *BlockChain) WriteEpochVdfBlockNum(epoch *big.Int, blockNum *big.Int) error {
err := rawdb.WriteEpochVdfBlockNum(bc.db, epoch, blockNum.Bytes())
if err != nil {
return err
}
bc.randomnessCache.Add("vdf-"+string(epoch.Bytes()), blockNum.Bytes())
return nil
}
// WriteCrossLinks saves the hashes of crosslinks by shardID and blockNum combination key
func (bc *BlockChain) WriteCrossLinks(batch rawdb.DatabaseWriter, cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.WriteCrossLinkShardBlock(batch, cl.ShardID(), cl.BlockNum(), cl.Serialize())
}
return err
}
// DeleteCrossLinks removes the hashes of crosslinks by shardID and blockNum combination key
func (bc *BlockChain) DeleteCrossLinks(cls []types.CrossLink) error {
var err error
for i := 0; i < len(cls); i++ {
cl := cls[i]
err = rawdb.DeleteCrossLinkShardBlock(bc.db, cl.ShardID(), cl.BlockNum())
}
return err
}
// ReadCrossLink retrieves crosslink given shardID and blockNum.
func (bc *BlockChain) ReadCrossLink(shardID uint32, blockNum uint64) (*types.CrossLink, error) {
bytes, err := rawdb.ReadCrossLinkShardBlock(bc.db, shardID, blockNum)
if err != nil {
return nil, err
}
crossLink, err := types.DeserializeCrossLink(bytes)
return crossLink, err
}
// LastContinuousCrossLink saves the last crosslink of a shard
// This function will update the latest crosslink in the sense that
// any previous block's crosslink is received up to this point
// there is no missing hole between genesis to this crosslink of given shardID
func (bc *BlockChain) LastContinuousCrossLink(batch rawdb.DatabaseWriter, shardID uint32) error {
if !bc.Config().IsCrossLink(bc.CurrentBlock().Epoch()) {
return errors.New("Trying to write last continuous cross link with epoch before cross link starting epoch")
}
oldLink, err := bc.ReadShardLastCrossLink(shardID)
if oldLink == nil || err != nil {
return err
}
newLink := oldLink
// Starting from last checkpoint, keeping reading immediate next crosslink until there is a gap
for i := oldLink.BlockNum() + 1; ; i++ {
tmp, err := bc.ReadCrossLink(shardID, i)
if err == nil && tmp != nil && tmp.BlockNum() == i {
newLink = tmp
} else {
break
}
}
if newLink.BlockNum() > oldLink.BlockNum() {
utils.Logger().Debug().Msgf("LastContinuousCrossLink: latest checkpoint blockNum %d", newLink.BlockNum())
return rawdb.WriteShardLastCrossLink(batch, shardID, newLink.Serialize())
}
return nil
}
// ReadShardLastCrossLink retrieves the last crosslink of a shard.
func (bc *BlockChain) ReadShardLastCrossLink(shardID uint32) (*types.CrossLink, error) {
bytes, err := rawdb.ReadShardLastCrossLink(bc.db, shardID)
if err != nil {
return nil, err
}
return types.DeserializeCrossLink(bytes)
}
// DeletePendingSlashingCandidates ..
func (bc *BlockChain) DeletePendingSlashingCandidates() error {
bc.pendingSlashingCandidatesMU.Lock()
defer bc.pendingSlashingCandidatesMU.Unlock()
bc.pendingSlashingCandidates.Purge()
return bc.WritePendingSlashingCandidates(slash.Records{})
}
// ReadPendingSlashingCandidates retrieves pending slashing candidates
func (bc *BlockChain) ReadPendingSlashingCandidates() (slash.Records, error) {
cls := slash.Records{}
if !bc.Config().IsStaking(bc.CurrentHeader().Epoch()) {
return cls, nil
}
var err error
bytes := []byte{}
if cached, ok := bc.pendingSlashingCandidates.Get(pendingSCCacheKey); ok {
bytes = cached.([]byte)
} else {
bytes, err = rawdb.ReadPendingSlashingCandidates(bc.db)
if err != nil || len(bytes) == 0 {
utils.Logger().Info().Err(err).
Int("dataLen", len(bytes)).
Msg("ReadPendingSlashingCandidates")
return nil, err
}
}
if err := rlp.DecodeBytes(bytes, &cls); err != nil {
utils.Logger().Error().Err(err).Msg("Invalid pending slashing candidates RLP decoding")
return nil, err
}
return cls, nil
}
// WritePendingSlashingCandidates saves the pending slashing candidates
func (bc *BlockChain) WritePendingSlashingCandidates(candidates slash.Records) error {
bytes, err := rlp.EncodeToBytes(candidates)
if err != nil {
const msg = "[WritePendingSlashingCandidates] Failed to encode pending slashing candidates"
utils.Logger().Error().Msg(msg)
return err
}
if err := rawdb.WritePendingSlashingCandidates(bc.db, bytes); err != nil {
return err
}
bc.pendingSlashingCandidates.Add(pendingSCCacheKey, bytes)
return nil
}
// ReadPendingCrossLinks retrieves pending crosslinks
func (bc *BlockChain) ReadPendingCrossLinks() ([]types.CrossLink, error) {
bytes := []byte{}
if cached, ok := bc.pendingCrossLinksCache.Get(pendingCLCacheKey); ok {
bytes = cached.([]byte)
} else {
bytes, err := rawdb.ReadPendingCrossLinks(bc.db)
if err != nil || len(bytes) == 0 {
utils.Logger().Info().Err(err).Int("dataLen", len(bytes)).Msg("ReadPendingCrossLinks")
return nil, err
}
}
cls := []types.CrossLink{}
if err := rlp.DecodeBytes(bytes, &cls); err != nil {
utils.Logger().Error().Err(err).Msg("Invalid pending crosslink RLP decoding")
return nil, err
}
return cls, nil
}
// WritePendingCrossLinks saves the pending crosslinks
func (bc *BlockChain) WritePendingCrossLinks(crossLinks []types.CrossLink) error {
// deduplicate crosslinks if any
m := map[uint32]map[uint64](types.CrossLink){}
for _, cl := range crossLinks {
if _, ok := m[cl.ShardID()]; !ok {
m[cl.ShardID()] = map[uint64](types.CrossLink){}
}
m[cl.ShardID()][cl.BlockNum()] = cl
}
cls := []types.CrossLink{}
for _, m1 := range m {
for _, cl := range m1 {
cls = append(cls, cl)
}
}
utils.Logger().Debug().Msgf("[WritePendingCrossLinks] Before Dedup has %d cls, after Dedup has %d cls", len(crossLinks), len(cls))
bytes, err := rlp.EncodeToBytes(cls)
if err != nil {
utils.Logger().Error().Msg("[WritePendingCrossLinks] Failed to encode pending crosslinks")
return err
}
if err := rawdb.WritePendingCrossLinks(bc.db, bytes); err != nil {
return err
}
by, err := rlp.EncodeToBytes(cls)
if err == nil {
bc.pendingCrossLinksCache.Add(pendingCLCacheKey, by)
}
return nil
}
// AddPendingSlashingCandidates appends pending slashing candidates
func (bc *BlockChain) AddPendingSlashingCandidates(
candidates []slash.Record,
) (int, error) {
bc.pendingSlashingCandidatesMU.Lock()
defer bc.pendingSlashingCandidatesMU.Unlock()
cls, err := bc.ReadPendingSlashingCandidates()
if err != nil || len(cls) == 0 {
err := bc.WritePendingSlashingCandidates(candidates)
if err != nil {
return 0, err
}
return 1, err
}
cls = append(cls, candidates...)
if err := bc.WritePendingSlashingCandidates(cls); err != nil {
return 0, err
}
return len(cls), nil
}
// AddPendingCrossLinks appends pending crosslinks
func (bc *BlockChain) AddPendingCrossLinks(pendingCLs []types.CrossLink) (int, error) {
bc.pendingCrossLinksMutex.Lock()
defer bc.pendingCrossLinksMutex.Unlock()
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
err := bc.WritePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
cls = append(cls, pendingCLs...)
err = bc.WritePendingCrossLinks(cls)
return len(cls), err
}
// DeleteFromPendingCrossLinks delete pending crosslinks that already committed (i.e. passed in the params)
func (bc *BlockChain) DeleteFromPendingCrossLinks(crossLinks []types.CrossLink) (int, error) {
bc.pendingCrossLinksMutex.Lock()
defer bc.pendingCrossLinksMutex.Unlock()
cls, err := bc.ReadPendingCrossLinks()
if err != nil || len(cls) == 0 {
return 0, err
}
m := map[uint32]map[uint64](struct{}){}
for _, cl := range crossLinks {
if _, ok := m[cl.ShardID()]; !ok {
m[cl.ShardID()] = map[uint64](struct{}){}
}
m[cl.ShardID()][cl.BlockNum()] = struct{}{}
}
pendingCLs := []types.CrossLink{}
for _, cl := range cls {
if _, ok := m[cl.ShardID()]; ok {
if _, ok1 := m[cl.ShardID()][cl.BlockNum()]; ok1 {
continue
}
}
pendingCLs = append(pendingCLs, cl)
}
err = bc.WritePendingCrossLinks(pendingCLs)
return len(pendingCLs), err
}
// IsSameLeaderAsPreviousBlock retrieves a block from the database by number, caching it
func (bc *BlockChain) IsSameLeaderAsPreviousBlock(block *types.Block) bool {
if IsEpochBlock(block) {
return false
}
previousHeader := bc.GetHeaderByNumber(block.NumberU64() - 1)
return block.Coinbase() == previousHeader.Coinbase()
}
// ChainDB ...
// TODO(ricl): in eth, this is not exposed. I expose it here because I need it in Harmony object.
// In eth, chainDB is initialized within Ethereum object
func (bc *BlockChain) ChainDB() ethdb.Database {
return bc.db
}
// GetVMConfig returns the block chain VM config.
func (bc *BlockChain) GetVMConfig() *vm.Config {
return &bc.vmConfig
}
// ReadCXReceipts retrieves the cross shard transaction receipts of a given shard
func (bc *BlockChain) ReadCXReceipts(shardID uint32, blockNum uint64, blockHash common.Hash) (types.CXReceipts, error) {
cxs, err := rawdb.ReadCXReceipts(bc.db, shardID, blockNum, blockHash)
if err != nil || len(cxs) == 0 {
return nil, err
}
return cxs, nil
}
// CXMerkleProof calculates the cross shard transaction merkle proof of a given destination shard
func (bc *BlockChain) CXMerkleProof(toShardID uint32, block *types.Block) (*types.CXMerkleProof, error) {
proof := &types.CXMerkleProof{BlockNum: block.Number(), BlockHash: block.Hash(), ShardID: block.ShardID(), CXReceiptHash: block.Header().OutgoingReceiptHash(), CXShardHashes: []common.Hash{}, ShardIDs: []uint32{}}
epoch := block.Header().Epoch()
shardingConfig := shard.Schedule.InstanceForEpoch(epoch)
shardNum := int(shardingConfig.NumShards())
for i := 0; i < shardNum; i++ {
receipts, err := bc.ReadCXReceipts(uint32(i), block.NumberU64(), block.Hash())
if err != nil || len(receipts) == 0 {
continue
} else {
hash := types.DeriveSha(receipts)
proof.CXShardHashes = append(proof.CXShardHashes, hash)
proof.ShardIDs = append(proof.ShardIDs, uint32(i))
}
}
if len(proof.ShardIDs) == 0 {
return nil, nil
}
return proof, nil
}
// WriteCXReceiptsProofSpent mark the CXReceiptsProof list with given unspent status
// true: unspent, false: spent
func (bc *BlockChain) WriteCXReceiptsProofSpent(db rawdb.DatabaseWriter, cxps []*types.CXReceiptsProof) {
for _, cxp := range cxps {
rawdb.WriteCXReceiptsProofSpent(db, cxp)
}
}
// IsSpent checks whether a CXReceiptsProof is unspent
func (bc *BlockChain) IsSpent(cxp *types.CXReceiptsProof) bool {
shardID := cxp.MerkleProof.ShardID
blockNum := cxp.MerkleProof.BlockNum.Uint64()
by, _ := rawdb.ReadCXReceiptsProofSpent(bc.db, shardID, blockNum)
if by == rawdb.SpentByte {
return true
}
return false
}
// ReadTxLookupEntry returns where the given transaction resides in the chain,
// as a (block hash, block number, index in transaction list) triple.
// returns 0, 0 if not found
func (bc *BlockChain) ReadTxLookupEntry(txID common.Hash) (common.Hash, uint64, uint64) {
return rawdb.ReadTxLookupEntry(bc.db, txID)
}
// ReadValidatorInformationAt reads staking
// information of given validatorWrapper at a specific state root
func (bc *BlockChain) ReadValidatorInformationAt(
addr common.Address, root common.Hash,
) (*staking.ValidatorWrapper, error) {
state, err := bc.StateAt(root)
if err != nil || state == nil {
return nil, errors.Wrapf(err, "at root: %s", root.Hex())
}
wrapper, err := state.ValidatorWrapper(addr)
if err != nil {
return nil, errors.Wrapf(err, "at root: %s", root.Hex())
}
return wrapper, nil
}
// ReadValidatorInformation reads staking information of given validator address
func (bc *BlockChain) ReadValidatorInformation(
addr common.Address,
) (*staking.ValidatorWrapper, error) {
return bc.ReadValidatorInformationAt(addr, bc.CurrentBlock().Root())
}
// ReadValidatorSnapshot reads the snapshot staking information of given validator address
func (bc *BlockChain) ReadValidatorSnapshot(
addr common.Address,
) (*staking.ValidatorWrapper, error) {
if cached, ok := bc.validatorCache.Get("validator-snapshot-" + string(addr.Bytes())); ok {
by := cached.([]byte)
v := staking.ValidatorWrapper{}
if err := rlp.DecodeBytes(by, &v); err != nil {
return nil, err
}
return &v, nil
}
return rawdb.ReadValidatorSnapshot(bc.db, addr, bc.CurrentBlock().Epoch())
}
// writeValidatorSnapshots writes the snapshot of provided list of validators
func (bc *BlockChain) writeValidatorSnapshots(batch rawdb.DatabaseWriter, addrs []common.Address, epoch *big.Int) error {
// Read all validator's current data
validators := []*staking.ValidatorWrapper{}
for i := range addrs {
validator, err := bc.ReadValidatorInformation(addrs[i])
if err != nil {
return err
}
validators = append(validators, validator)
}
// Batch write the current data as snapshot
for i := range validators {
if err := rawdb.WriteValidatorSnapshot(batch, validators[i], epoch); err != nil {
return err
}
}
// Update cache
for i := range validators {
by, err := rlp.EncodeToBytes(validators[i])
if err == nil {
key := "validator-snapshot-" + string(validators[i].Address.Bytes())
bc.validatorCache.Add(key, by)
}
}
return nil
}
// ReadValidatorStats reads the stats of a validator
func (bc *BlockChain) ReadValidatorStats(addr common.Address) (*staking.ValidatorStats, error) {
return rawdb.ReadValidatorStats(bc.db, addr)
}
// UpdateValidatorVotingPower writes the voting power for the committees
func (bc *BlockChain) UpdateValidatorVotingPower(batch rawdb.DatabaseWriter, state *shard.State) error {
if state == nil {
return errors.New("[UpdateValidatorVotingPower] Nil shard state")
}
rosters := make([]votepower.RosterPerShard, len(state.Shards))
for i := range state.Shards {
roster, err := votepower.Compute(state.Shards[i].Slots)
if err != nil {
return err
}
rosters[i] = votepower.RosterPerShard{state.Shards[i].ShardID, roster}
}
networkWide := votepower.AggregateRosters(rosters)
for key, value := range networkWide {
statsFromDB, err := rawdb.ReadValidatorStats(bc.db, key)
if statsFromDB == nil {
statsFromDB = &staking.ValidatorStats{
big.NewInt(0), numeric.NewDec(0),
[]staking.VotePerShard{}, []staking.KeysPerShard{},
}
}
statsFromDB.TotalEffectiveStake = value.TotalEffectiveStake
statsFromDB.VotingPowerPerShard = value.VotingPower
statsFromDB.BLSKeyPerShard = value.BLSPublicKeysOwned
err = rawdb.WriteValidatorStats(batch, key, statsFromDB)
if err != nil {
return err
}
}
return nil
}
// deleteValidatorSnapshots deletes the snapshot staking information of given validator address
// TODO: delete validator snapshots from X epochs ago
func (bc *BlockChain) deleteValidatorSnapshots(addrs []common.Address) error {
batch := bc.db.NewBatch()
for i := range addrs {
rawdb.DeleteValidatorSnapshot(batch, addrs[i], bc.CurrentBlock().Epoch())
}
if err := batch.Write(); err != nil {
return err
}
for i := range addrs {
bc.validatorCache.Remove("validator-snapshot-" + string(addrs[i].Bytes()))
}
return nil
}
// UpdateValidatorSnapshots updates the content snapshot of all validators
// Note: this should only be called within the blockchain insert process.
func (bc *BlockChain) UpdateValidatorSnapshots(batch rawdb.DatabaseWriter, epoch *big.Int) error {
allValidators, err := bc.ReadValidatorList()
if err != nil {
return err
}
// TODO: enable this once we allow validator to delete itself.
//err = bc.deleteValidatorSnapshots(allValidators)
//if err != nil {
// return err
//}
return bc.writeValidatorSnapshots(batch, allValidators, epoch)
}
// ReadValidatorList reads the addresses of current all validators
func (bc *BlockChain) ReadValidatorList() ([]common.Address, error) {
if cached, ok := bc.validatorListCache.Get("validatorList"); ok {
by := cached.([]byte)
m := []common.Address{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadValidatorList(bc.db, false)
}
// WriteValidatorList writes the list of validator addresses to database
// Note: this should only be called within the blockchain insert process.
func (bc *BlockChain) WriteValidatorList(db rawdb.DatabaseWriter, addrs []common.Address) error {
err := rawdb.WriteValidatorList(db, addrs, false)
if err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(addrs)
if err == nil {
bc.validatorListCache.Add("validatorList", bytes)
}
return nil
}
// ReadElectedValidatorList reads the addresses of elected validators
func (bc *BlockChain) ReadElectedValidatorList() ([]common.Address, error) {
if cached, ok := bc.validatorListCache.Get("electedValidatorList"); ok {
by := cached.([]byte)
m := []common.Address{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadValidatorList(bc.db, true)
}
// WriteElectedValidatorList writes the list of
// elected validator addresses to database
// Note: this should only be called within the blockchain insert process.
func (bc *BlockChain) WriteElectedValidatorList(
batch rawdb.DatabaseWriter, addrs []common.Address,
) error {
if err := rawdb.WriteValidatorList(batch, addrs, true); err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(addrs)
if err == nil {
bc.validatorListCache.Add("electedValidatorList", bytes)
}
return nil
}
// ReadDelegationsByDelegator reads the addresses of validators delegated by a delegator
func (bc *BlockChain) ReadDelegationsByDelegator(
delegator common.Address,
) ([]staking.DelegationIndex, error) {
if cached, ok := bc.validatorListByDelegatorCache.Get(string(delegator.Bytes())); ok {
by := cached.([]byte)
m := []staking.DelegationIndex{}
if err := rlp.DecodeBytes(by, &m); err != nil {
return nil, err
}
return m, nil
}
return rawdb.ReadDelegationsByDelegator(bc.db, delegator)
}
// writeDelegationsByDelegator writes the list of validator addresses to database
func (bc *BlockChain) writeDelegationsByDelegator(batch rawdb.DatabaseWriter, delegator common.Address, indices []staking.DelegationIndex) error {
err := rawdb.WriteDelegationsByDelegator(batch, delegator, indices)
if err != nil {
return err
}
bytes, err := rlp.EncodeToBytes(indices)
if err == nil {
bc.validatorListByDelegatorCache.Add(string(delegator.Bytes()), bytes)
}
return nil
}
// UpdateStakingMetaData updates the validator's
// and the delegator's meta data according to staking transaction
// Note: this should only be called within the blockchain insert process.
func (bc *BlockChain) UpdateStakingMetaData(
batch rawdb.DatabaseWriter, tx *staking.StakingTransaction, root common.Hash,
) error {
// TODO: simply the logic here in staking/types/transaction.go
payload, err := tx.RLPEncodeStakeMsg()
if err != nil {
return err
}
decodePayload, err := staking.RLPDecodeStakeMsg(payload, tx.StakingType())
if err != nil {
return err
}
epoch := bc.CurrentHeader().Epoch()
switch tx.StakingType() {
case staking.DirectiveCreateValidator:
createValidator := decodePayload.(*staking.CreateValidator)
list, err := bc.ReadValidatorList()
if err != nil {
return err
}
if list == nil {
list = []common.Address{}
}
beforeLen := len(list)
list = utils.AppendIfMissing(list, createValidator.ValidatorAddress)
if len(list) > beforeLen {
if err = bc.WriteValidatorList(batch, list); err != nil {
return err
}
}
// Update validator snapshot with the new validator
validator, err := bc.ReadValidatorInformationAt(
createValidator.ValidatorAddress, root,
)
if err != nil {
return err
}
if err := rawdb.WriteValidatorSnapshot(batch, validator, epoch); err != nil {
return err
}
// Add self delegation into the index
return bc.addDelegationIndex(
batch, createValidator.ValidatorAddress, createValidator.ValidatorAddress, root,
)
case staking.DirectiveEditValidator:
case staking.DirectiveDelegate:
delegate := decodePayload.(*staking.Delegate)
return bc.addDelegationIndex(
batch, delegate.DelegatorAddress, delegate.ValidatorAddress, root,
)
case staking.DirectiveUndelegate:
case staking.DirectiveCollectRewards:
default:
}
return nil
}
// ReadBlockRewardAccumulator must only be called on beaconchain
func (bc *BlockChain) ReadBlockRewardAccumulator(number uint64) (*big.Int, error) {
if !bc.chainConfig.IsStaking(shard.Schedule.CalcEpochNumber(number)) {
return big.NewInt(0), nil
}
if cached, ok := bc.blockAccumulatorCache.Get(number); ok {
return cached.(*big.Int), nil
}
return rawdb.ReadBlockRewardAccumulator(bc.db, number)
}
// WriteBlockRewardAccumulator directly writes the BlockRewardAccumulator value
// Note: this should only be called once during staking launch.
func (bc *BlockChain) WriteBlockRewardAccumulator(
batch rawdb.DatabaseWriter, reward *big.Int, number uint64,
) error {
err := rawdb.WriteBlockRewardAccumulator(batch, reward, number)
if err != nil {
return err
}
bc.blockAccumulatorCache.Add(number, reward)
return nil
}
//UpdateBlockRewardAccumulator ..
// Note: this should only be called within the blockchain insert process.
func (bc *BlockChain) UpdateBlockRewardAccumulator(batch rawdb.DatabaseWriter, diff *big.Int, number uint64) error {
current, err := bc.ReadBlockRewardAccumulator(number - 1)
if err != nil {
// one-off fix for pangaea, return after pangaea enter staking.
current = big.NewInt(0)
bc.WriteBlockRewardAccumulator(batch, current, number)
}
return bc.WriteBlockRewardAccumulator(batch, new(big.Int).Add(current, diff), number)
}
// Note this should read from the state of current block in concern (root == newBlock.root)
func (bc *BlockChain) addDelegationIndex(batch rawdb.DatabaseWriter, delegatorAddress, validatorAddress common.Address, root common.Hash) error {
// Get existing delegations
delegations, err := bc.ReadDelegationsByDelegator(delegatorAddress)
if err != nil {
return err
}
// If there is an existing delegation, just return
validatorAddressBytes := validatorAddress.Bytes()
for _, delegation := range delegations {
if bytes.Compare(delegation.ValidatorAddress.Bytes(), validatorAddressBytes) == 0 {
return nil
}
}
// Found the delegation from state and add the delegation index
// Note this should read from the state of current block in concern
wrapper, err := bc.ReadValidatorInformationAt(validatorAddress, root)
if err != nil {
return err
}
for i := range wrapper.Delegations {
if bytes.Compare(wrapper.Delegations[i].DelegatorAddress.Bytes(), delegatorAddress.Bytes()) == 0 {
delegations = append(delegations, staking.DelegationIndex{
validatorAddress,
uint64(i),
})
}
}
return bc.writeDelegationsByDelegator(batch, delegatorAddress, delegations)
}
// ValidatorCandidates returns the up to date validator candidates for next epoch
func (bc *BlockChain) ValidatorCandidates() []common.Address {
list, err := bc.ReadValidatorList()
if err != nil {
return make([]common.Address, 0)
}
return list
}
// DelegatorsInformation returns up to date information of delegators of a given validator address
func (bc *BlockChain) DelegatorsInformation(addr common.Address) []*staking.Delegation {
return make([]*staking.Delegation, 0)
}
// GetECDSAFromCoinbase retrieve corresponding ecdsa address from Coinbase Address
func (bc *BlockChain) GetECDSAFromCoinbase(header *block.Header) (common.Address, error) {
// backward compatibility: before isStaking epoch, coinbase address is the ecdsa address
coinbase := header.Coinbase()
isStaking := bc.Config().IsStaking(header.Epoch())
if !isStaking {
return coinbase, nil
}
shardState, err := bc.ReadShardState(header.Epoch())
if err != nil {
return common.Address{}, ctxerror.New("cannot read shard state",
"epoch", header.Epoch(),
"coinbaseAddr", coinbase,
).WithCause(err)
}
committee := shardState.FindCommitteeByID(header.ShardID())
if committee == nil {
return common.Address{}, ctxerror.New("cannot find shard in the shard state",
"blockNum", header.Number(),
"shardID", header.ShardID(),
"coinbaseAddr", coinbase,
)
}
for _, member := range committee.Slots {
// After staking the coinbase address will be the address of bls public key
if bytes.Compare(member.EcdsaAddress[:], coinbase[:]) == 0 {
return member.EcdsaAddress, nil
}
if utils.GetAddressFromBlsPubKeyBytes(member.BlsPublicKey[:]) == coinbase {
return member.EcdsaAddress, nil
}
}
return common.Address{}, ctxerror.New("cannot find corresponding ECDSA Address", "coinbaseAddr", header.Coinbase())
}
// SuperCommitteeForNextEpoch ...
// isVerify=true means validators use it to verify
// isVerify=false means leader is to propose
func (bc *BlockChain) SuperCommitteeForNextEpoch(
beacon consensus_engine.ChainReader,
header *block.Header,
isVerify bool,
) (*shard.State, error) {
var (
nextCommittee = new(shard.State)
err error
beaconEpoch = new(big.Int)
shardState = shard.State{}
)
switch header.ShardID() {
case shard.BeaconChainShardID:
if shard.Schedule.IsLastBlock(header.Number().Uint64()) {
nextCommittee, err = committee.WithStakingEnabled.Compute(
new(big.Int).Add(header.Epoch(), common.Big1),
beacon,
)
}
default:
// TODO: needs to make sure beacon chain sync works.
if isVerify {
//verify
shardState, err = header.GetShardState()
if err != nil {
return &shard.State{}, err
}
// before staking epoch
if shardState.Epoch == nil {
beaconEpoch = new(big.Int).Add(header.Epoch(), common.Big1)
} else { // after staking epoch
beaconEpoch = shardState.Epoch
}
} else {
//propose
beaconEpoch = beacon.CurrentHeader().Epoch()
}
utils.Logger().Debug().Msgf("[SuperCommitteeCalculation] isVerify: %+v, realBeaconEpoch:%+v, beaconEpoch: %+v, headerEpoch:%+v, shardStateEpoch:%+v",
isVerify, beacon.CurrentHeader().Epoch(), beaconEpoch, header.Epoch(), shardState.Epoch)
nextEpoch := new(big.Int).Add(header.Epoch(), common.Big1)
if bc.Config().IsStaking(nextEpoch) {
// If next epoch is staking epoch, I should wait and listen for beacon chain for epoch changes
switch beaconEpoch.Cmp(header.Epoch()) {
case 1:
// If beacon chain is bigger than shard chain in epoch, it means I should catch up with beacon chain now
nextCommittee, err = committee.WithStakingEnabled.ReadFromDB(
beaconEpoch, beacon,
)
utils.Logger().Debug().
Uint64("blockNum", header.Number().Uint64()).
Uint64("myCurEpoch", header.Epoch().Uint64()).
Uint64("beaconEpoch", beaconEpoch.Uint64()).
Msg("Propose new epoch as beacon chain's epoch")
case 0:
// If it's same epoch, no need to propose new shard state (new epoch change)
case -1:
// If beacon chain is behind, shard chain should wait for the beacon chain by not changing epochs.
}
} else {
if bc.Config().IsStaking(beaconEpoch) {
// If I am not even in the last epoch before staking epoch and beacon chain is already in staking epoch,
// I should just catch up with beacon chain's epoch
nextCommittee, err = committee.WithStakingEnabled.ReadFromDB(
beaconEpoch, beacon,
)
utils.Logger().Debug().
Uint64("blockNum", header.Number().Uint64()).
Uint64("myCurEpoch", header.Epoch().Uint64()).
Uint64("beaconEpoch", beaconEpoch.Uint64()).
Msg("Propose entering staking along with beacon chain's epoch")
} else {
// If I are not in staking nor has beacon chain proposed a staking-based shard state,
// do pre-staking committee calculation
if shard.Schedule.IsLastBlock(header.Number().Uint64()) {
nextCommittee, err = committee.WithStakingEnabled.Compute(
nextEpoch,
bc,
)
}
}
}
}
return nextCommittee, err
}