The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/consensus/consensus.go

629 lines
20 KiB

// Package consensus implements the Cosi PBFT consensus
package consensus // consensus
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"reflect"
"strconv"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
protobuf "github.com/golang/protobuf/proto"
"github.com/harmony-one/bls/ffi/go/bls"
consensus_proto "github.com/harmony-one/harmony/api/consensus"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
bls_cosi "github.com/harmony-one/harmony/crypto/bls"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/p2p/host"
"golang.org/x/crypto/sha3"
proto_discovery "github.com/harmony-one/harmony/api/proto/discovery"
)
// Consensus is the main struct with all states and data related to consensus process.
type Consensus struct {
// The current state of the consensus
state State
// Commits collected from validators.
prepareSigs map[uint32]*bls.Sign
commitSigs map[uint32]*bls.Sign
aggregatedPrepareSig *bls.Sign
aggregatedCommitSig *bls.Sign
prepareBitmap *bls_cosi.Mask
commitBitmap *bls_cosi.Mask
// map of nodeID to validator Peer object
// FIXME: should use PubKey of p2p.Peer as the hashkey
validators sync.Map // key is uint16, value is p2p.Peer
// Minimal number of peers in the shard
// If the number of validators is less than minPeers, the consensus won't start
MinPeers int
// Leader's address
leader p2p.Peer
// Public keys of the committee including leader and validators
PublicKeys []*bls.PublicKey
pubKeyLock sync.Mutex
// private/public keys of current node
priKey *bls.SecretKey
pubKey *bls.PublicKey
// Whether I am leader. False means I am validator
IsLeader bool
// Leader or validator Id - 4 byte
nodeID uint32
// Consensus Id (View Id) - 4 byte
consensusID uint32
// Blockhash - 32 byte
blockHash [32]byte
// Block to run consensus on
block []byte
// Array of block hashes.
blockHashes [][32]byte
// Shard Id which this node belongs to
ShardID uint32
// global consensus mutex
mutex sync.Mutex
// Validator specific fields
// Blocks received but not done with consensus yet
blocksReceived map[uint32]*BlockConsensusStatus
// Signal channel for starting a new consensus process
ReadySignal chan struct{}
// The verifier func passed from Node object
BlockVerifier func(*types.Block) bool
// The post-consensus processing func passed from Node object
// Called when consensus on a new block is done
OnConsensusDone func(*types.Block)
// current consensus block to check if out of sync
ConsensusBlock chan *BFTBlockInfo
// verified block to state sync broadcast
VerifiedNewBlock chan *types.Block
uniqueIDInstance *utils.UniqueValidatorID
// The p2p host used to send/receive p2p messages
host p2p.Host
// Signal channel for lost validators
OfflinePeers chan p2p.Peer
// List of offline Peers
OfflinePeerList []p2p.Peer
}
// BFTBlockInfo send the latest block that was in BFT consensus process as well as its consensusID to state syncing
// consensusID is necessary to make sure the out of sync node can enter the correct view
type BFTBlockInfo struct {
Block *types.Block
ConsensusID uint32
}
// BlockConsensusStatus used to keep track of the consensus status of multiple blocks received so far
// This is mainly used in the case that this node is lagging behind and needs to catch up.
// For example, the consensus moved to round N and this node received message(N).
// However, this node may still not finished with round N-1, so the newly received message(N)
// should be stored in this temporary structure. In case the round N-1 finishes, it can catch
// up to the latest state of round N by using this structure.
type BlockConsensusStatus struct {
block []byte // the block data
state State // the latest state of the consensus
}
// UpdateConsensusID is used to update latest consensusID for nodes that out of sync
func (consensus *Consensus) UpdateConsensusID(consensusID uint32) {
consensus.mutex.Lock()
defer consensus.mutex.Unlock()
if consensus.consensusID < consensusID {
utils.GetLogInstance().Debug("update consensusID", "myConsensusID", consensus.consensusID, "newConsensusID", consensusID)
consensus.consensusID = consensusID
}
}
// New creates a new Consensus object
func New(host p2p.Host, ShardID string, peers []p2p.Peer, leader p2p.Peer) *Consensus {
consensus := Consensus{}
consensus.host = host
selfPeer := host.GetSelfPeer()
if leader.Port == selfPeer.Port && leader.IP == selfPeer.IP {
consensus.IsLeader = true
} else {
consensus.IsLeader = false
}
consensus.leader = leader
for _, peer := range peers {
consensus.validators.Store(utils.GetUniqueIDFromPeer(peer), peer)
}
consensus.prepareSigs = map[uint32]*bls.Sign{}
consensus.commitSigs = map[uint32]*bls.Sign{}
// Initialize cosign bitmap
allPublicKeys := make([]*bls.PublicKey, 0)
for _, validatorPeer := range peers {
allPublicKeys = append(allPublicKeys, validatorPeer.PubKey)
}
allPublicKeys = append(allPublicKeys, leader.PubKey)
consensus.PublicKeys = allPublicKeys
prepareBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, consensus.leader.PubKey)
commitBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, consensus.leader.PubKey)
consensus.prepareBitmap = prepareBitmap
consensus.commitBitmap = commitBitmap
consensus.aggregatedPrepareSig = nil
consensus.aggregatedCommitSig = nil
// For now use socket address as ID
// TODO: populate Id derived from address
consensus.nodeID = utils.GetUniqueIDFromPeer(selfPeer)
// Set private key for myself so that I can sign messages.
nodeIDBytes := make([]byte, 32)
binary.LittleEndian.PutUint32(nodeIDBytes, consensus.nodeID)
privateKey := bls.SecretKey{}
err := privateKey.SetLittleEndian(nodeIDBytes)
consensus.priKey = &privateKey
consensus.pubKey = privateKey.GetPublicKey()
consensus.consensusID = 0 // or view Id in the original pbft paper
myShardID, err := strconv.Atoi(ShardID)
if err != nil {
panic("Unparseable shard Id" + ShardID)
}
consensus.ShardID = uint32(myShardID)
// For validators to keep track of all blocks received but not yet committed, so as to catch up to latest consensus if lagged behind.
consensus.blocksReceived = make(map[uint32]*BlockConsensusStatus)
if consensus.IsLeader {
consensus.ReadySignal = make(chan struct{})
// send a signal to indicate it's ready to run consensus
// this signal is consumed by node object to create a new block and in turn trigger a new consensus on it
// this is a goroutine because go channel without buffer will block
go func() {
consensus.ReadySignal <- struct{}{}
}()
}
consensus.uniqueIDInstance = utils.GetUniqueValidatorIDInstance()
consensus.OfflinePeerList = make([]p2p.Peer, 0)
// consensus.Log.Info("New Consensus", "IP", ip, "Port", port, "NodeID", consensus.nodeID, "priKey", consensus.priKey, "pubKey", consensus.pubKey)
return &consensus
}
// Checks the basic meta of a consensus message, including the signature.
func (consensus *Consensus) checkConsensusMessage(message consensus_proto.Message, publicKey *bls.PublicKey) error {
consensusID := message.ConsensusId
blockHash := message.BlockHash
// Verify message signature
err := verifyMessageSig(publicKey, message)
if err != nil {
utils.GetLogInstance().Warn("Failed to verify the message signature", "Error", err)
return ErrInvalidConsensusMessage
}
// check consensus Id
if consensusID != consensus.consensusID {
utils.GetLogInstance().Warn("Wrong consensus Id", "myConsensusId", consensus.consensusID, "theirConsensusId", consensusID, "consensus", consensus)
return ErrConsensusIDNotMatch
}
if !bytes.Equal(blockHash, consensus.blockHash[:]) {
utils.GetLogInstance().Warn("Wrong blockHash", "consensus", consensus)
return ErrInvalidConsensusMessage
}
return nil
}
// Gets the validator peer based on validator ID.
func (consensus *Consensus) getValidatorPeerByID(validatorID uint32) *p2p.Peer {
v, ok := consensus.validators.Load(validatorID)
if !ok {
utils.GetLogInstance().Warn("Unrecognized validator", "validatorID", validatorID, "consensus", consensus)
return nil
}
value, ok := v.(p2p.Peer)
if !ok {
utils.GetLogInstance().Warn("Invalid validator", "validatorID", validatorID, "consensus", consensus)
return nil
}
return &value
}
// Verify the signature of the message are valid from the signer's public key.
func verifyMessageSig(signerPubKey *bls.PublicKey, message consensus_proto.Message) error {
signature := message.Signature
message.Signature = nil
messageBytes, err := protobuf.Marshal(&message)
if err != nil {
return err
}
msgSig := bls.Sign{}
err = msgSig.Deserialize(signature)
if err != nil {
return err
}
msgHash := sha256.Sum256(messageBytes)
if !msgSig.VerifyHash(signerPubKey, msgHash[:]) {
return errors.New("failed to verify the signature")
}
return nil
}
// Author returns the author of the block header.
func (consensus *Consensus) Author(header *types.Header) (common.Address, error) {
// TODO: implement this
return common.Address{}, nil
}
// Sign on the hash of the message
func (consensus *Consensus) signMessage(message []byte) []byte {
hash := sha256.Sum256(message)
signature := consensus.priKey.SignHash(hash[:])
return signature.Serialize()
}
// Sign on the consensus message signature field.
func (consensus *Consensus) signConsensusMessage(message *consensus_proto.Message) error {
message.Signature = nil
// TODO: use custom serialization method rather than protobuf
marshaledMessage, err := protobuf.Marshal(message)
if err != nil {
return err
}
// 64 byte of signature on previous data
signature := consensus.signMessage(marshaledMessage)
message.Signature = signature
return nil
}
// GetValidatorPeers returns list of validator peers.
func (consensus *Consensus) GetValidatorPeers() []p2p.Peer {
validatorPeers := make([]p2p.Peer, 0)
consensus.validators.Range(func(k, v interface{}) bool {
if peer, ok := v.(p2p.Peer); ok {
validatorPeers = append(validatorPeers, peer)
return true
}
return false
})
return validatorPeers
}
// GetPrepareSigsArray returns the signatures for prepare as a array
func (consensus *Consensus) GetPrepareSigsArray() []*bls.Sign {
sigs := []*bls.Sign{}
for _, sig := range consensus.prepareSigs {
sigs = append(sigs, sig)
}
return sigs
}
// GetCommitSigsArray returns the signatures for commit as a array
func (consensus *Consensus) GetCommitSigsArray() []*bls.Sign {
sigs := []*bls.Sign{}
for _, sig := range consensus.commitSigs {
sigs = append(sigs, sig)
}
return sigs
}
// ResetState resets the state of the consensus
func (consensus *Consensus) ResetState() {
consensus.state = Finished
consensus.prepareSigs = map[uint32]*bls.Sign{}
consensus.commitSigs = map[uint32]*bls.Sign{}
prepareBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, consensus.leader.PubKey)
commitBitmap, _ := bls_cosi.NewMask(consensus.PublicKeys, consensus.leader.PubKey)
consensus.prepareBitmap = prepareBitmap
consensus.commitBitmap = commitBitmap
consensus.aggregatedPrepareSig = nil
consensus.aggregatedCommitSig = nil
// Clear the OfflinePeersList again
consensus.OfflinePeerList = make([]p2p.Peer, 0)
}
// Returns a string representation of this consensus
func (consensus *Consensus) String() string {
var duty string
if consensus.IsLeader {
duty = "LDR" // leader
} else {
duty = "VLD" // validator
}
return fmt.Sprintf("[duty:%s, pubKey:%s, ShardID:%v, nodeID:%v, state:%s]",
duty, hex.EncodeToString(consensus.pubKey.Serialize()), consensus.ShardID, consensus.nodeID, consensus.state)
}
// AddPeers adds new peers into the validator map of the consensus
// and add the public keys
func (consensus *Consensus) AddPeers(peers []*p2p.Peer) int {
count := 0
for _, peer := range peers {
_, ok := consensus.validators.Load(utils.GetUniqueIDFromPeer(*peer))
if !ok {
if peer.ValidatorID == -1 {
peer.ValidatorID = int(consensus.uniqueIDInstance.GetUniqueID())
}
consensus.validators.Store(utils.GetUniqueIDFromPeer(*peer), *peer)
consensus.pubKeyLock.Lock()
consensus.PublicKeys = append(consensus.PublicKeys, peer.PubKey)
consensus.pubKeyLock.Unlock()
utils.GetLogInstance().Debug("[SYNC]", "new peer added", peer)
}
count++
}
return count
}
// RemovePeers will remove the peer from the validator list and PublicKeys
// It will be called when leader/node lost connection to peers
func (consensus *Consensus) RemovePeers(peers []p2p.Peer) int {
// early return as most of the cases no peers to remove
if len(peers) == 0 {
return 0
}
count := 0
count2 := 0
newList := append(consensus.PublicKeys[:0:0], consensus.PublicKeys...)
for _, peer := range peers {
consensus.validators.Range(func(k, v interface{}) bool {
if p, ok := v.(p2p.Peer); ok {
// We are using peer.IP and peer.Port to identify the unique peer
// FIXME (lc): use a generic way to identify a peer
if p.IP == peer.IP && p.Port == peer.Port {
consensus.validators.Delete(k)
count++
}
return true
}
return false
})
for i, pp := range newList {
// Not Found the pubkey, if found pubkey, ignore it
if reflect.DeepEqual(peer.PubKey, pp) {
// consensus.Log.Debug("RemovePeers", "i", i, "pp", pp, "peer.PubKey", peer.PubKey)
newList = append(newList[:i], newList[i+1:]...)
count2++
}
}
}
if count2 > 0 {
consensus.UpdatePublicKeys(newList)
// Send out Pong messages to everyone in the shard to keep the publickeys in sync
// Or the shard won't be able to reach consensus if public keys are mismatch
validators := consensus.GetValidatorPeers()
pong := proto_discovery.NewPongMessage(validators, consensus.PublicKeys)
buffer := pong.ConstructPongMessage()
if utils.UseLibP2P {
consensus.host.SendMessageToGroups([]p2p.GroupID{p2p.GroupIDBeacon}, buffer)
} else {
host.BroadcastMessageFromLeader(consensus.host, validators, buffer, consensus.OfflinePeers)
}
}
return count2
}
// DebugPrintPublicKeys print all the PublicKeys in string format in Consensus
func (consensus *Consensus) DebugPrintPublicKeys() {
for _, k := range consensus.PublicKeys {
str := fmt.Sprintf("%s", hex.EncodeToString(k.Serialize()))
utils.GetLogInstance().Debug("pk:", "string", str)
}
utils.GetLogInstance().Debug("PublicKeys:", "#", len(consensus.PublicKeys))
}
// DebugPrintValidators print all validator ip/port/key in string format in Consensus
func (consensus *Consensus) DebugPrintValidators() {
count := 0
consensus.validators.Range(func(k, v interface{}) bool {
if p, ok := v.(p2p.Peer); ok {
str2 := fmt.Sprintf("%s", p.PubKey.Serialize())
utils.GetLogInstance().Debug("validator:", "IP", p.IP, "Port", p.Port, "VID", p.ValidatorID, "Key", str2)
count++
return true
}
return false
})
utils.GetLogInstance().Debug("Validators", "#", count)
}
// UpdatePublicKeys updates the PublicKeys variable, protected by a mutex
func (consensus *Consensus) UpdatePublicKeys(pubKeys []*bls.PublicKey) int {
consensus.pubKeyLock.Lock()
consensus.PublicKeys = append(pubKeys[:0:0], pubKeys...)
consensus.pubKeyLock.Unlock()
return len(consensus.PublicKeys)
}
// NewFaker returns a faker consensus.
func NewFaker() *Consensus {
return &Consensus{}
}
// VerifyHeader checks whether a header conforms to the consensus rules of the
// stock bft engine.
func (consensus *Consensus) VerifyHeader(chain ChainReader, header *types.Header, seal bool) error {
// TODO: implement this
return nil
}
// VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers
// concurrently. The method returns a quit channel to abort the operations and
// a results channel to retrieve the async verifications.
func (consensus *Consensus) VerifyHeaders(chain ChainReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error) {
abort, results := make(chan struct{}), make(chan error, len(headers))
for i := 0; i < len(headers); i++ {
results <- nil
}
return abort, results
}
func (consensus *Consensus) verifyHeaderWorker(chain ChainReader, headers []*types.Header, seals []bool, index int) error {
var parent *types.Header
if index == 0 {
parent = chain.GetHeader(headers[0].ParentHash, headers[0].Number.Uint64()-1)
} else if headers[index-1].Hash() == headers[index].ParentHash {
parent = headers[index-1]
}
if parent == nil {
return ErrUnknownAncestor
}
if chain.GetHeader(headers[index].Hash(), headers[index].Number.Uint64()) != nil {
return nil // known block
}
return consensus.verifyHeader(chain, headers[index], parent, false, seals[index])
}
// verifyHeader checks whether a header conforms to the consensus rules of the
// stock bft engine.
func (consensus *Consensus) verifyHeader(chain ChainReader, header, parent *types.Header, uncle bool, seal bool) error {
return nil
}
// VerifySeal implements consensus.Engine, checking whether the given block satisfies
// the PoW difficulty requirements.
func (consensus *Consensus) VerifySeal(chain ChainReader, header *types.Header) error {
return nil
}
// Finalize implements consensus.Engine, accumulating the block and uncle rewards,
// setting the final state and assembling the block.
func (consensus *Consensus) Finalize(chain ChainReader, header *types.Header, state *state.DB, txs []*types.Transaction, receipts []*types.Receipt) (*types.Block, error) {
// Accumulate any block and uncle rewards and commit the final state root
// Header seems complete, assemble into a block and return
accumulateRewards(chain.Config(), state, header)
header.Root = state.IntermediateRoot(false)
return types.NewBlock(header, txs, receipts), nil
}
// SealHash returns the hash of a block prior to it being sealed.
func (consensus *Consensus) SealHash(header *types.Header) (hash common.Hash) {
hasher := sha3.NewLegacyKeccak256()
rlp.Encode(hasher, []interface{}{
header.ParentHash,
header.Coinbase,
header.Root,
header.TxHash,
header.ReceiptHash,
header.Bloom,
header.Difficulty,
header.Number,
header.GasLimit,
header.GasUsed,
header.Time,
header.Extra,
})
hasher.Sum(hash[:0])
return hash
}
// Seal is to seal final block.
func (consensus *Consensus) Seal(chain ChainReader, block *types.Block, results chan<- *types.Block, stop <-chan struct{}) error {
// TODO: implement final block sealing
return nil
}
// Prepare is to prepare ...
// TODO(RJ): fix it.
func (consensus *Consensus) Prepare(chain ChainReader, header *types.Header) error {
// TODO: implement prepare method
return nil
}
// AccumulateRewards credits the coinbase of the given block with the mining
// reward. The total reward consists of the static block reward and rewards for
// included uncles. The coinbase of each uncle block is also rewarded.
func accumulateRewards(config *params.ChainConfig, state *state.DB, header *types.Header) {
// TODO: implement mining rewards
}
// GetNodeID returns the nodeID
func (consensus *Consensus) GetNodeID() uint32 {
return consensus.nodeID
}
// GetPeerFromID will get peer from peerID, bool value in return true means success and false means fail
func (consensus *Consensus) GetPeerFromID(peerID uint32) (p2p.Peer, bool) {
v, ok := consensus.validators.Load(peerID)
if !ok {
return p2p.Peer{}, false
}
value, ok := v.(p2p.Peer)
if !ok {
return p2p.Peer{}, false
}
return value, true
}
// SendMessage sends message thru p2p host to peer.
func (consensus *Consensus) SendMessage(peer p2p.Peer, message []byte) {
host.SendMessage(consensus.host, peer, message, nil)
}
// Populates the common basic fields for all consensus message.
func (consensus *Consensus) populateMessageFields(message *consensus_proto.Message) {
// 4 byte consensus id
message.ConsensusId = consensus.consensusID
// 32 byte block hash
message.BlockHash = consensus.blockHash[:]
// 4 byte sender id
message.SenderId = uint32(consensus.nodeID)
}
// Signs the consensus message and returns the marshaled message.
func (consensus *Consensus) signAndMarshalConsensusMessage(message *consensus_proto.Message) ([]byte, error) {
err := consensus.signConsensusMessage(message)
if err != nil {
return []byte{}, err
}
marshaledMessage, err := protobuf.Marshal(message)
if err != nil {
return []byte{}, err
}
return marshaledMessage, nil
}