The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node_handler.go

833 lines
29 KiB

package node
import (
"bytes"
"context"
"encoding/hex"
"errors"
"math"
"math/big"
"os"
"os/exec"
"strconv"
"sync/atomic"
"syscall"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
pb "github.com/golang/protobuf/proto"
"github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/proto"
proto_discovery "github.com/harmony-one/harmony/api/proto/discovery"
"github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/contracts/structs"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/p2p/host"
)
const (
// MaxNumberOfTransactionsPerBlock is the max number of transaction per a block.
MaxNumberOfTransactionsPerBlock = 8000
consensusTimeout = 30 * time.Second
)
// ReceiveGlobalMessage use libp2p pubsub mechanism to receive global broadcast messages
func (node *Node) ReceiveGlobalMessage() {
ctx := context.Background()
for {
if node.globalGroupReceiver == nil {
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.globalGroupReceiver.Receive(ctx)
if sender != node.host.GetID() {
//utils.GetLogInstance().Info("[PUBSUB]", "received global msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// ReceiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages
func (node *Node) ReceiveGroupMessage() {
ctx := context.Background()
for {
if node.shardGroupReceiver == nil {
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.shardGroupReceiver.Receive(ctx)
if sender != node.host.GetID() {
//utils.GetLogInstance().Info("[PUBSUB]", "received group msg", len(msg), "sender", sender)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// ReceiveClientGroupMessage use libp2p pubsub mechanism to receive broadcast messages for client
func (node *Node) ReceiveClientGroupMessage() {
ctx := context.Background()
for {
if node.clientReceiver == nil {
// check less frequent on client messages
time.Sleep(100 * time.Millisecond)
continue
}
msg, sender, err := node.clientReceiver.Receive(ctx)
if sender != node.host.GetID() {
// utils.GetLogInstance().Info("[CLIENT]", "received group msg", len(msg), "sender", sender, "error", err)
if err == nil {
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
go node.messageHandler(msg[5:], string(sender))
}
}
}
}
// messageHandler parses the message and dispatch the actions
func (node *Node) messageHandler(content []byte, sender string) {
msgCategory, err := proto.GetMessageCategory(content)
if err != nil {
utils.GetLogInstance().Error("Read node type failed", "err", err, "node", node)
return
}
msgType, err := proto.GetMessageType(content)
if err != nil {
utils.GetLogInstance().Error("Read action type failed", "err", err, "node", node)
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err != nil {
utils.GetLogInstance().Error("Read message payload failed", "err", err, "node", node)
return
}
switch msgCategory {
case proto.Consensus:
msgPayload, _ := proto.GetConsensusMessagePayload(content)
node.ConsensusMessageHandler(msgPayload)
case proto.DRand:
msgPayload, _ := proto.GetDRandMessagePayload(content)
if node.DRand != nil {
if node.DRand.IsLeader {
node.DRand.ProcessMessageLeader(msgPayload)
} else {
node.DRand.ProcessMessageValidator(msgPayload)
}
}
case proto.Staking:
utils.GetLogInstance().Info("NET: Received staking message")
msgPayload, _ := proto.GetStakingMessagePayload(content)
// Only beacon leader processes staking txn
if node.NodeConfig.Role() != nodeconfig.BeaconLeader {
return
}
node.processStakingMessage(msgPayload)
case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto_node.Transaction:
utils.GetLogInstance().Info("NET: received message: Node/Transaction")
node.transactionMessageHandler(msgPayload)
case proto_node.Block:
utils.GetLogInstance().Info("NET: received message: Node/Block")
blockMsgType := proto_node.BlockMessageType(msgPayload[0])
switch blockMsgType {
case proto_node.Sync:
utils.GetLogInstance().Info("NET: received message: Node/Sync")
var blocks []*types.Block
err := rlp.DecodeBytes(msgPayload[1:], &blocks)
if err != nil {
utils.GetLogInstance().Error("block sync", "error", err)
} else {
// for non-beaconchain node, subscribe to beacon block broadcast
role := node.NodeConfig.Role()
if proto_node.BlockMessageType(msgPayload[0]) == proto_node.Sync && (role == nodeconfig.ShardValidator || role == nodeconfig.ShardLeader || role == nodeconfig.NewNode) {
utils.GetLogInstance().Info("Block being handled by block channel", "self peer", node.SelfPeer, "block", blocks[0].NumberU64())
for _, block := range blocks {
node.BeaconBlockChannel <- block
}
}
if node.Client != nil && node.Client.UpdateBlocks != nil && blocks != nil {
utils.GetLogInstance().Info("Block being handled by client by", "self peer", node.SelfPeer)
node.Client.UpdateBlocks(blocks)
}
}
}
case proto_node.PING:
node.pingMessageHandler(msgPayload, sender)
case proto_node.PONG:
node.pongMessageHandler(msgPayload)
case proto_node.ShardState:
if err := node.epochShardStateMessageHandler(msgPayload); err != nil {
ctxerror.Log15(utils.GetLogger().Warn, err)
}
}
default:
utils.GetLogInstance().Error("Unknown", "MsgCategory", msgCategory)
}
}
func (node *Node) processStakingMessage(msgPayload []byte) {
msg := &message.Message{}
err := pb.Unmarshal(msgPayload, msg)
if err == nil {
stakingRequest := msg.GetStaking()
txs := types.Transactions{}
if err = rlp.DecodeBytes(stakingRequest.Transaction, &txs); err == nil {
utils.GetLogInstance().Info("Successfully added staking transaction to pending list.")
node.addPendingTransactions(txs)
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking transaction list", "error", err)
}
} else {
utils.GetLogInstance().Error("Failed to unmarshal staking msg payload", "error", err)
}
}
func (node *Node) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto_node.TransactionMessageType(msgPayload[0])
switch txMessageType {
case proto_node.Send:
txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge type
if err != nil {
utils.GetLogInstance().Error("Failed to deserialize transaction list", "error", err)
}
node.addPendingTransactions(txs)
case proto_node.Request:
reader := bytes.NewBuffer(msgPayload[1:])
txIDs := make(map[[32]byte]bool)
buf := make([]byte, 32) // 32 byte hash Id
for {
_, err := reader.Read(buf)
if err != nil {
break
}
var txID [32]byte
copy(txID[:], buf)
txIDs[txID] = true
}
var txToReturn []*types.Transaction
for _, tx := range node.pendingTransactions {
if txIDs[tx.Hash()] {
txToReturn = append(txToReturn, tx)
}
}
}
}
// BroadcastNewBlock is called by consensus leader to sync new blocks with other clients/nodes.
// NOTE: For now, just send to the client (basically not broadcasting)
// TODO (lc): broadcast the new blocks to new nodes doing state sync
func (node *Node) BroadcastNewBlock(newBlock *types.Block) {
if node.ClientPeer != nil {
utils.GetLogInstance().Debug("Sending new block to client", "client", node.ClientPeer)
node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetClientGroupID()}, host.ConstructP2pMessage(byte(0), proto_node.ConstructBlocksSyncMessage([]*types.Block{newBlock})))
}
}
// VerifyNewBlock is called by consensus participants to verify the block (account model) they are running consensus on
func (node *Node) VerifyNewBlock(newBlock *types.Block) error {
// TODO ek – where do we verify parent-child invariants,
// e.g. "child.Number == child.IsGenesis() ? 0 : parent.Number+1"?
err := node.Blockchain().ValidateNewBlock(newBlock)
if err != nil {
return ctxerror.New("cannot ValidateNewBlock",
"blockHash", newBlock.Hash(),
"numTx", len(newBlock.Transactions()),
).WithCause(err)
}
// TODO: verify the vrf randomness
_ = newBlock.Header().RandPreimage
err = node.validateNewShardState(newBlock, &node.CurrentStakes)
if err != nil {
return ctxerror.New("failed to verify sharding state").WithCause(err)
}
return nil
}
// BigMaxUint64 is maximum possible uint64 value, that is, (1**64)-1.
var BigMaxUint64 = new(big.Int).SetBytes([]byte{
255, 255, 255, 255, 255, 255, 255, 255,
})
// validateNewShardState validate whether the new shard state root matches
func (node *Node) validateNewShardState(block *types.Block, stakeInfo *map[common.Address]*structs.StakeInfo) error {
// Common case first – blocks without resharding proposal
header := block.Header()
if header.ShardStateHash == (common.Hash{}) {
// No new shard state was proposed
if block.ShardID() == 0 {
if core.IsEpochLastBlock(block) {
// TODO ek - invoke view change
return errors.New("beacon leader did not propose resharding")
}
} else {
if node.nextShardState.master != nil &&
!time.Now().Before(node.nextShardState.proposeTime) {
// TODO ek – invoke view change
return errors.New("regular leader did not propose resharding")
}
}
// We aren't expecting to reshard, so proceed to sign
return nil
}
proposed := header.ShardState
if block.ShardID() == 0 {
// Beacon validators independently recalculate the master state and
// compare it against the proposed copy.
nextEpoch := new(big.Int).Add(block.Header().Epoch, common.Big1)
// TODO ek – this may be called from regular shards,
// for vetting beacon chain blocks received during block syncing.
// DRand may or or may not get in the way. Test this out.
expected, err := core.CalculateNewShardState(
node.Blockchain(), nextEpoch, stakeInfo)
if err != nil {
return ctxerror.New("cannot calculate expected shard state").
WithCause(err)
}
if types.CompareShardState(expected, proposed) != 0 {
// TODO ek – log state proposal differences
// TODO ek – this error should trigger view change
err := errors.New("shard state proposal is different from expected")
// TODO ek/chao – calculated shard state is different even with the
// same input, i.e. it is nondeterministic.
// Don't treat this as a blocker until we fix the nondeterminism.
//return err
ctxerror.Log15(utils.GetLogger().Warn, err)
}
} else {
// Regular validators fetch the local-shard copy on the beacon chain
// and compare it against the proposed copy.
//
// We trust the master proposal in our copy of beacon chain.
// The sanity check for the master proposal is done earlier,
// when the beacon block containing the master proposal is received
// and before it is admitted into the local beacon chain.
//
// TODO ek – fetch masterProposal from beaconchain instead
masterProposal := node.nextShardState.master.ShardState
expected := masterProposal.FindCommitteeByID(block.ShardID())
switch len(proposed) {
case 0:
// Proposal to discontinue shard
if expected != nil {
// TODO ek – invoke view change
return errors.New(
"leader proposed to disband against beacon decision")
}
case 1:
// Proposal to continue shard
proposed := proposed[0]
// Sanity check: Shard ID should match
if proposed.ShardID != block.ShardID() {
// TODO ek – invoke view change
return ctxerror.New("proposal has incorrect shard ID",
"proposedShard", proposed.ShardID,
"blockShard", block.ShardID())
}
// Did beaconchain say we are no more?
if expected == nil {
// TODO ek – invoke view change
return errors.New(
"leader proposed to continue against beacon decision")
}
// Did beaconchain say the same proposal?
if types.CompareCommittee(expected, &proposed) != 0 {
// TODO ek – log differences
// TODO ek – invoke view change
return errors.New("proposal differs from one in beacon chain")
}
default:
// TODO ek – invoke view change
return ctxerror.New(
"regular resharding proposal has incorrect number of shards",
"numShards", len(proposed))
}
}
return nil
}
// PostConsensusProcessing is called by consensus participants, after consensus is done, to:
// 1. add the new block to blockchain
// 2. [leader] send new block to the client
func (node *Node) PostConsensusProcessing(newBlock *types.Block) {
if node.Consensus.PubKey.IsEqual(node.Consensus.LeaderPubKey) {
node.BroadcastNewBlock(newBlock)
} else {
utils.GetLogInstance().Info("BINGO !!! Reached Consensus", "ViewID", node.Consensus.GetViewID())
}
node.AddNewBlock(newBlock)
// Update contract deployer's nonce so default contract like faucet can issue transaction with current nonce
nonce := node.GetNonceOfAddress(crypto.PubkeyToAddress(node.ContractDeployerKey.PublicKey))
atomic.StoreUint64(&node.ContractDeployerCurrentNonce, nonce)
for _, tx := range newBlock.Transactions() {
msg, err := tx.AsMessage(types.HomesteadSigner{})
if err != nil {
utils.GetLogInstance().Error("Error when parsing tx into message")
}
if _, ok := node.AddressNonce.Load(msg.From()); ok {
nonce := node.GetNonceOfAddress(msg.From())
node.AddressNonce.Store(msg.From(), nonce)
}
}
if node.Consensus.ShardID == 0 {
// Update contract deployer's nonce so default contract like faucet can issue transaction with current nonce
nonce := node.GetNonceOfAddress(crypto.PubkeyToAddress(node.ContractDeployerKey.PublicKey))
atomic.StoreUint64(&node.ContractDeployerCurrentNonce, nonce)
// TODO: enable drand only for beacon chain
// ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch)
if node.DRand != nil {
go func() {
node.ConfirmedBlockChannel <- newBlock
}()
}
// ConfirmedBlockChannel which is listened by drand leader who will initiate DRG if its a epoch block (first block of a epoch)
if node.DRand != nil {
go func() {
node.ConfirmedBlockChannel <- newBlock
}()
}
// TODO: update staking information once per epoch.
node.UpdateStakingList(node.QueryStakeInfo())
node.printStakingList()
}
newBlockHeader := newBlock.Header()
if newBlockHeader.ShardStateHash != (common.Hash{}) {
if node.Consensus.ShardID == 0 {
// TODO ek – this is a temp hack until beacon chain sync is fixed
// End-of-epoch block on beacon chain; block's EpochState is the
// master resharding table. Broadcast it to the network.
if err := node.broadcastEpochShardState(newBlock); err != nil {
e := ctxerror.New("cannot broadcast shard state").WithCause(err)
ctxerror.Log15(utils.GetLogInstance().Error, e)
}
}
node.transitionIntoNextEpoch(newBlockHeader.ShardState)
}
}
func (node *Node) broadcastEpochShardState(newBlock *types.Block) error {
epochShardStateMessage := proto_node.ConstructEpochShardStateMessage(
types.EpochShardState{
Epoch: newBlock.Header().Epoch.Uint64() + 1,
ShardState: newBlock.Header().ShardState,
},
)
return node.host.SendMessageToGroups(
[]p2p.GroupID{node.NodeConfig.GetClientGroupID()},
host.ConstructP2pMessage(byte(0), epochShardStateMessage))
}
// AddNewBlock is usedd to add new block into the blockchain.
func (node *Node) AddNewBlock(newBlock *types.Block) {
blockNum, err := node.Blockchain().InsertChain([]*types.Block{newBlock})
if err != nil {
utils.GetLogInstance().Debug("Error adding new block to blockchain", "blockNum", blockNum, "hash", newBlock.Header().Hash(), "Error", err)
} else {
utils.GetLogInstance().Info("adding new block to blockchain", "blockNum", blockNum, "hash", newBlock.Header().Hash(), "by node", node.SelfPeer)
}
}
func (node *Node) pingMessageHandler(msgPayload []byte, sender string) int {
if sender != "" {
_, ok := node.duplicatedPing.LoadOrStore(sender, true)
if ok {
// duplicated ping message return
return 0
}
}
ping, err := proto_discovery.GetPingMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Ping Message", "error", err)
return -1
}
peer := new(p2p.Peer)
peer.IP = ping.Node.IP
peer.Port = ping.Node.Port
peer.PeerID = ping.Node.PeerID
peer.ConsensusPubKey = nil
if ping.Node.PubKey != nil {
peer.ConsensusPubKey = &bls.PublicKey{}
if err := peer.ConsensusPubKey.Deserialize(ping.Node.PubKey[:]); err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
return -1
}
}
// utils.GetLogInstance().Debug("[pingMessageHandler]", "incoming peer", peer)
// add to incoming peer list
//node.host.AddIncomingPeer(*peer)
node.host.ConnectHostPeer(*peer)
if ping.Node.Role == proto_node.ClientRole {
utils.GetLogInstance().Info("Add Client Peer to Node", "Address", node.Consensus.GetSelfAddress(), "Client", peer)
node.ClientPeer = peer
} else {
node.AddPeers([]*p2p.Peer{peer})
utils.GetLogInstance().Info("Add Peer to Node", "Address", node.Consensus.GetSelfAddress(), "Peer", peer, "# Peers", len(node.Consensus.PublicKeys))
}
return 1
}
// SendPongMessage is the a goroutine to periodcally send pong message to all peers
func (node *Node) SendPongMessage() {
tick := time.NewTicker(2 * time.Second)
tick2 := time.NewTicker(120 * time.Second)
numPeers := node.numPeers
sentMessage := false
firstTime := true
// Send Pong Message only when there is change on the number of peers
for {
select {
case <-tick.C:
peers := node.Consensus.GetValidatorPeers()
numPeersNow := node.numPeers
// no peers, wait for another tick
if numPeersNow == 0 {
utils.GetLogInstance().Info("[PONG] no peers, continue", "numPeers", numPeers, "numPeersNow", numPeersNow)
continue
}
// new peers added
if numPeersNow != numPeers {
utils.GetLogInstance().Info("[PONG] different number of peers", "numPeers", numPeers, "numPeersNow", numPeersNow)
sentMessage = false
} else {
// stable number of peers, sent the pong message
// also make sure number of peers is greater than the minimal required number
if !sentMessage && numPeersNow >= node.Consensus.MinPeers {
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey(), node.Consensus.ShardID)
buffer := pong.ConstructPongMessage()
err := node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetShardGroupID()}, host.ConstructP2pMessage(byte(0), buffer))
if err != nil {
utils.GetLogInstance().Error("[PONG] failed to send pong message", "group", node.NodeConfig.GetShardGroupID())
continue
} else {
utils.GetLogInstance().Info("[PONG] sent pong message to", "group", node.NodeConfig.GetShardGroupID(), "# nodes", numPeersNow)
}
sentMessage = true
// wait a bit until all validators received pong message
time.Sleep(200 * time.Millisecond)
// only need to notify consensus leader once to start the consensus
if firstTime {
// Leader stops sending ping message
time.Sleep(5 * time.Second)
node.serviceManager.TakeAction(&service.Action{Action: service.Stop, ServiceType: service.PeerDiscovery})
node.startConsensus <- struct{}{}
firstTime = false
}
}
}
numPeers = numPeersNow
case <-tick2.C:
// send pong message regularly to make sure new node received all the public keys
// also nodes offline/online will receive the public keys
peers := node.Consensus.GetValidatorPeers()
pong := proto_discovery.NewPongMessage(peers, node.Consensus.PublicKeys, node.Consensus.GetLeaderPubKey(), node.Consensus.ShardID)
buffer := pong.ConstructPongMessage()
err := node.host.SendMessageToGroups([]p2p.GroupID{node.NodeConfig.GetShardGroupID()}, host.ConstructP2pMessage(byte(0), buffer))
if err != nil {
utils.GetLogInstance().Error("[PONG] failed to send regular pong message", "group", node.NodeConfig.GetShardGroupID())
continue
} else {
utils.GetLogInstance().Info("[PONG] sent regular pong message to", "group", node.NodeConfig.GetShardGroupID(), "# nodes", len(peers))
}
}
}
}
func (node *Node) pongMessageHandler(msgPayload []byte) int {
utils.GetLogInstance().Error("Got Pong Message")
pong, err := proto_discovery.GetPongMessage(msgPayload)
if err != nil {
utils.GetLogInstance().Error("Can't get Pong Message", "error", err)
return -1
}
if pong.ShardID != node.Consensus.ShardID {
utils.GetLogInstance().Error(
"Received Pong message for the wrong shard",
"receivedShardID", pong.ShardID,
"expectedShardID", node.Consensus.ShardID)
return 0
}
// set the leader pub key is the first thing to do
// otherwise, we may not be able to validate the consensus messages received
// which will result in first consensus timeout
// TODO: remove this after fully migrating to beacon chain-based committee membership
//err = node.Consensus.SetLeaderPubKey(pong.LeaderPubKey)
//if err != nil {
// utils.GetLogInstance().Error("Unmarshal Consensus Leader PubKey Failed", "error", err)
//} else {
// utils.GetLogInstance().Info("Set Consensus Leader PubKey", "key", node.Consensus.GetLeaderPubKey())
//}
//err = node.DRand.SetLeaderPubKey(pong.LeaderPubKey)
//if err != nil {
// utils.GetLogInstance().Error("Unmarshal DRand Leader PubKey Failed", "error", err)
//} else {
// utils.GetLogInstance().Info("Set DRand Leader PubKey", "key", node.Consensus.GetLeaderPubKey())
//}
peers := make([]*p2p.Peer, 0)
for _, p := range pong.Peers {
peer := new(p2p.Peer)
peer.IP = p.IP
peer.Port = p.Port
peer.PeerID = p.PeerID
peer.ConsensusPubKey = &bls.PublicKey{}
err = peer.ConsensusPubKey.Deserialize(p.PubKey[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed", "error", err)
continue
}
peers = append(peers, peer)
}
if len(peers) > 0 {
node.AddPeers(peers)
}
// Reset Validator PublicKeys every time we receive PONG message from Leader
// The PublicKeys has to be idential across the shard on every node
// TODO (lc): we need to handle RemovePeer situation
publicKeys := make([]*bls.PublicKey, 0)
// Create the the PubKey from the []byte sent from leader
for _, k := range pong.PubKeys {
key := bls.PublicKey{}
err = key.Deserialize(k[:])
if err != nil {
utils.GetLogInstance().Error("UnmarshalBinary Failed PubKeys", "error", err)
continue
}
publicKeys = append(publicKeys, &key)
}
utils.GetLogInstance().Debug("[pongMessageHandler]", "#keys", len(publicKeys), "#peers", len(peers))
if node.State == NodeWaitToJoin {
node.State = NodeReadyForConsensus
}
// Stop discovery service after received pong message
data := make(map[string]interface{})
data["peer"] = p2p.GroupAction{Name: node.NodeConfig.GetShardGroupID(), Action: p2p.ActionPause}
node.serviceManager.TakeAction(&service.Action{Action: service.Notify, ServiceType: service.PeerDiscovery, Params: data})
// TODO: remove this after fully migrating to beacon chain-based committee membership
return 0
}
func (node *Node) epochShardStateMessageHandler(msgPayload []byte) error {
logger := utils.GetLogInstance()
getLogger := func() log.Logger { return utils.WithCallerSkip(logger, 1) }
epochShardState, err := proto_node.DeserializeEpochShardStateFromMessage(msgPayload)
if err != nil {
return ctxerror.New("Can't get shard state message").WithCause(err)
}
if node.Consensus == nil && node.NodeConfig.Role() != nodeconfig.NewNode {
return nil
}
receivedEpoch := big.NewInt(int64(epochShardState.Epoch))
getLogger().Info("received new shard state", "epoch", receivedEpoch)
node.nextShardState.master = epochShardState
if node.NodeConfig.IsLeader() {
// Wait a bit to allow the master table to reach other validators.
node.nextShardState.proposeTime = time.Now().Add(5 * time.Second)
} else {
// Wait a bit to allow the master table to reach the leader,
// and to allow the leader to propose next shard state based upon it.
node.nextShardState.proposeTime = time.Now().Add(15 * time.Second)
}
// TODO ek – this should be done from replaying beaconchain once
// beaconchain sync is fixed
err = node.Beaconchain().WriteShardState(
receivedEpoch, epochShardState.ShardState)
if err != nil {
return ctxerror.New("cannot store shard state", "epoch", receivedEpoch).
WithCause(err)
}
return nil
}
func (node *Node) transitionIntoNextEpoch(shardState types.ShardState) {
logger := utils.GetLogInstance()
getLogger := func() log.Logger { return utils.WithCallerSkip(logger, 1) }
logger = logger.New(
"blsPubKey", hex.EncodeToString(node.Consensus.PubKey.Serialize()),
"curShard", node.Blockchain().ShardID(),
"curLeader", node.NodeConfig.IsLeader())
for _, c := range shardState {
logger.Debug("new shard information",
"shardID", c.ShardID,
"nodeList", c.NodeList)
}
myShardID, isNextLeader := findRoleInShardState(
node.Consensus.PubKey, shardState)
logger = logger.New(
"nextShard", myShardID,
"nextLeader", isNextLeader)
if myShardID == math.MaxUint32 {
getLogger().Info("Somehow I got kicked out. Exiting")
os.Exit(8) // 8 represents it's a loop and the program restart itself
}
myShardState := shardState[myShardID]
// Update public keys
var publicKeys []*bls.PublicKey
for idx, nodeID := range myShardState.NodeList {
key := &bls.PublicKey{}
err := key.Deserialize(nodeID.BlsPublicKey[:])
if err != nil {
getLogger().Error("Failed to deserialize BLS public key in shard state",
"idx", idx,
"error", err)
}
publicKeys = append(publicKeys, key)
}
node.Consensus.UpdatePublicKeys(publicKeys)
node.DRand.UpdatePublicKeys(publicKeys)
if node.Blockchain().ShardID() == myShardID {
getLogger().Info("staying in the same shard")
} else {
getLogger().Info("moving to another shard")
if err := node.shardChains.Close(); err != nil {
getLogger().Error("cannot close shard chains", "error", err)
}
restartProcess(getRestartArguments(myShardID))
}
}
func findRoleInShardState(
key *bls.PublicKey, state types.ShardState,
) (shardID uint32, isLeader bool) {
keyBytes := key.Serialize()
for idx, shard := range state {
for nodeIdx, nodeID := range shard.NodeList {
if bytes.Compare(nodeID.BlsPublicKey[:], keyBytes) == 0 {
return uint32(idx), nodeIdx == 0
}
}
}
return math.MaxUint32, false
}
func restartProcess(args []string) {
execFile, err := getBinaryPath()
if err != nil {
utils.GetLogInstance().Crit("Failed to get program path when restarting program", "error", err, "file", execFile)
}
utils.GetLogInstance().Info("Restarting program", "args", args, "env", os.Environ())
err = syscall.Exec(execFile, args, os.Environ())
if err != nil {
utils.GetLogInstance().Crit("Failed to restart program after resharding", "error", err)
}
panic("syscall.Exec() is not supposed to return")
}
func getRestartArguments(myShardID uint32) []string {
args := os.Args
hasShardID := false
shardIDFlag := "-shard_id"
// newNodeFlag := "-is_newnode"
for i, arg := range args {
if arg == shardIDFlag {
if i+1 < len(args) {
args[i+1] = strconv.Itoa(int(myShardID))
} else {
args = append(args, strconv.Itoa(int(myShardID)))
}
hasShardID = true
}
// TODO: enable this
//if arg == newNodeFlag {
// args[i] = "" // remove new node flag
//}
}
if !hasShardID {
args = append(args, shardIDFlag)
args = append(args, strconv.Itoa(int(myShardID)))
}
return args
}
// Gets the path of this currently running binary program.
func getBinaryPath() (argv0 string, err error) {
argv0, err = exec.LookPath(os.Args[0])
if nil != err {
return
}
if _, err = os.Stat(argv0); nil != err {
return
}
return
}
// ConsensusMessageHandler passes received message in node_handler to consensus
func (node *Node) ConsensusMessageHandler(msgPayload []byte) {
if node.Consensus.ConsensusVersion == "v1" {
if nodeconfig.GetDefaultConfig().IsLeader() {
node.Consensus.ProcessMessageLeader(msgPayload)
} else {
node.Consensus.ProcessMessageValidator(msgPayload)
}
return
}
if node.Consensus.ConsensusVersion == "v2" {
select {
case node.Consensus.MsgChan <- msgPayload:
case <-time.After(consensusTimeout):
utils.GetLogInstance().Debug("[Consensus] ConsensusMessageHandler timeout", "duration", consensusTimeout, "msgPayload", len(msgPayload))
}
return
}
}