The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/block_validator.go

229 lines
9.1 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/harmony-one/harmony/block"
"github.com/harmony-one/harmony/internal/ctxerror"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/params"
)
// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus_engine.Engine // Consensus engine used for validating
}
// NewBlockValidator returns a new block validator which is safe for re-use
func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus_engine.Engine) *BlockValidator {
validator := &BlockValidator{
config: config,
engine: engine,
bc: blockchain,
}
return validator
}
// ValidateBody validates the given block's uncles and verifies the block
// header's transaction and uncle roots. The headers are assumed to be already
// validated at this point.
func (v *BlockValidator) ValidateBody(block *types.Block) error {
// Check whether the block's known, and if not, that it's linkable
if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) {
return ErrKnownBlock
}
if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) {
return consensus_engine.ErrUnknownAncestor
}
return consensus_engine.ErrPrunedAncestor
}
// Header validity is known at this point, check the uncles and transactions
header := block.Header()
//if err := v.engine.VerifyUncles(v.bc, block); err != nil {
// return err
//}
if hash := types.DeriveSha(block.Transactions()); hash != header.TxHash() {
return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash())
}
return nil
}
// ValidateState validates the various changes that happen after a state
// transition, such as amount of used gas, the receipt roots and the state root
// itself. ValidateState returns a database batch if the validation was a success
// otherwise nil and an error is returned.
func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.DB, receipts types.Receipts, cxReceipts types.CXReceipts, usedGas uint64) error {
header := block.Header()
if block.GasUsed() != usedGas {
return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas)
}
// Validate the received block's bloom with the one derived from the generated receipts.
// For valid blocks this should always validate to true.
rbloom := types.CreateBloom(receipts)
if rbloom != header.Bloom() {
return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom(), rbloom)
}
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]]))
receiptSha := types.DeriveSha(receipts)
if receiptSha != header.ReceiptHash() {
return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash(), receiptSha)
}
if v.config.IsCrossTx(block.Epoch()) {
cxsSha := types.DeriveMultipleShardsSha(cxReceipts)
if cxsSha != header.OutgoingReceiptHash() {
return fmt.Errorf("invalid cross shard receipt root hash (remote: %x local: %x)", header.OutgoingReceiptHash(), cxsSha)
}
}
// Validate the state root against the received state root and throw
// an error if they don't match.
if root := statedb.IntermediateRoot(v.config.IsS3(header.Epoch())); header.Root() != root {
return fmt.Errorf("invalid merkle root (remote: %x local: %x)", header.Root(), root)
}
return nil
}
// ValidateHeader checks whether a header conforms to the consensus rules of a
// given engine. Verifying the seal may be done optionally here, or explicitly
// via the VerifySeal method.
func (v *BlockValidator) ValidateHeader(block *types.Block, seal bool) error {
return v.engine.VerifyHeader(v.bc, block.Header(), true)
}
// ValidateHeaders verifies a batch of blocks' headers concurrently. The method returns a quit channel
// to abort the operations and a results channel to retrieve the async verifications
func (v *BlockValidator) ValidateHeaders(chain []*types.Block) (chan<- struct{}, <-chan error) {
// Start the parallel header verifier
headers := make([]*block.Header, len(chain))
seals := make([]bool, len(chain))
for i, block := range chain {
headers[i] = block.Header()
seals[i] = true
}
return v.engine.VerifyHeaders(v.bc, headers, seals)
}
// CalcGasLimit computes the gas limit of the next block after parent. It aims
// to keep the baseline gas above the provided floor, and increase it towards the
// ceil if the blocks are full. If the ceil is exceeded, it will always decrease
// the gas allowance.
func CalcGasLimit(parent *types.Block, gasFloor, gasCeil uint64) uint64 {
// contrib = (parentGasUsed * 3 / 2) / 1024
contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor
// decay = parentGasLimit / 1024 -1
decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1
/*
strategy: gasLimit of block-to-mine is set based on parent's
gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we
increase it, otherwise lower it (or leave it unchanged if it's right
at that usage) the amount increased/decreased depends on how far away
from parentGasLimit * (2/3) parentGasUsed is.
*/
limit := parent.GasLimit() - decay + contrib
if limit < params.MinGasLimit {
limit = params.MinGasLimit
}
// If we're outside our allowed gas range, we try to hone towards them
if limit < gasFloor {
limit = parent.GasLimit() + decay
if limit > gasFloor {
limit = gasFloor
}
} else if limit > gasCeil {
limit = parent.GasLimit() - decay
if limit < gasCeil {
limit = gasCeil
}
}
return limit
}
// ValidateCXReceiptsProof checks whether the given CXReceiptsProof is consistency with itself
func (v *BlockValidator) ValidateCXReceiptsProof(cxp *types.CXReceiptsProof) error {
if !v.config.IsCrossTx(cxp.Header.Epoch()) {
return ctxerror.New("[ValidateCXReceiptsProof] cross shard receipt received before cx fork")
}
toShardID, err := cxp.GetToShardID()
if err != nil {
return ctxerror.New("[ValidateCXReceiptsProof] invalid shardID").WithCause(err)
}
merkleProof := cxp.MerkleProof
shardRoot := common.Hash{}
foundMatchingShardID := false
byteBuffer := bytes.NewBuffer([]byte{})
// prepare to calculate source shard outgoing cxreceipts root hash
for j := 0; j < len(merkleProof.ShardIDs); j++ {
sKey := make([]byte, 4)
binary.BigEndian.PutUint32(sKey, merkleProof.ShardIDs[j])
byteBuffer.Write(sKey)
byteBuffer.Write(merkleProof.CXShardHashes[j][:])
if merkleProof.ShardIDs[j] == toShardID {
shardRoot = merkleProof.CXShardHashes[j]
foundMatchingShardID = true
}
}
if !foundMatchingShardID {
return ctxerror.New("[ValidateCXReceiptsProof] Didn't find matching shardID")
}
sourceShardID := merkleProof.ShardID
sourceBlockNum := merkleProof.BlockNum
sha := types.DeriveSha(cxp.Receipts)
// (1) verify the CXReceipts trie root match
if sha != shardRoot {
return ctxerror.New("[ValidateCXReceiptsProof] Trie Root of ReadCXReceipts Not Match", "sourceShardID", sourceShardID, "sourceBlockNum", sourceBlockNum, "calculated", sha, "got", shardRoot)
}
// (2) verify the outgoingCXReceiptsHash match
outgoingHashFromSourceShard := crypto.Keccak256Hash(byteBuffer.Bytes())
if outgoingHashFromSourceShard != merkleProof.CXReceiptHash {
return ctxerror.New("[ValidateCXReceiptsProof] IncomingReceiptRootHash from source shard not match", "sourceShardID", sourceShardID, "sourceBlockNum", sourceBlockNum, "calculated", outgoingHashFromSourceShard, "got", merkleProof.CXReceiptHash)
}
// (3) verify the block hash matches
if cxp.Header.Hash() != merkleProof.BlockHash || cxp.Header.OutgoingReceiptHash() != merkleProof.CXReceiptHash {
return ctxerror.New("[ValidateCXReceiptsProof] BlockHash or OutgoingReceiptHash not match in block Header", "blockHash", cxp.Header.Hash(), "merkleProofBlockHash", merkleProof.BlockHash, "headerOutReceiptHash", cxp.Header.OutgoingReceiptHash(), "merkleOutReceiptHash", merkleProof.CXReceiptHash)
}
// (4) verify blockHeader with seal
return v.engine.VerifyHeaderWithSignature(v.bc, cxp.Header, cxp.CommitSig, cxp.CommitBitmap, true)
}