The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/worker/worker.go

452 lines
16 KiB

package worker
import (
"fmt"
"math/big"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/block"
blockfactory "github.com/harmony-one/harmony/block/factory"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
shardingconfig "github.com/harmony-one/harmony/internal/configs/sharding"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
staking "github.com/harmony-one/harmony/staking/types"
)
// environment is the worker's current environment and holds all of the current state information.
type environment struct {
state *state.DB // apply state changes here
gasPool *core.GasPool // available gas used to pack transactions
header *block.Header
txs []*types.Transaction
stkingTxs staking.StakingTransactions
receipts []*types.Receipt
outcxs []*types.CXReceipt // cross shard transaction receipts (source shard)
incxs []*types.CXReceiptsProof // cross shard receipts and its proof (desitinatin shard)
}
// Worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type Worker struct {
config *params.ChainConfig
factory blockfactory.Factory
chain *core.BlockChain
current *environment // An environment for current running cycle.
engine consensus_engine.Engine
gasFloor uint64
gasCeil uint64
}
// Returns a tuple where the first value is the txs sender account address,
// the second is the throttling result enum for the transaction of interest.
// Throttling happens based on the amount, frequency, etc.
func (w *Worker) throttleTxs(selected types.Transactions, recentTxsStats types.RecentTxsStats, txsThrottleConfig *shardingconfig.TxsThrottleConfig, tx *types.Transaction) (common.Address, shardingconfig.TxThrottleFlag) {
var sender common.Address
msg, err := tx.AsMessage(types.MakeSigner(w.config, w.chain.CurrentBlock().Epoch()))
if err != nil {
utils.Logger().Error().Err(err).Str("txId", tx.Hash().Hex()).Msg("Error when parsing tx into message")
} else {
sender = msg.From()
}
// do not throttle transactions if disabled
if !txsThrottleConfig.EnableTxnThrottling {
return sender, shardingconfig.TxSelect
}
// already selected max num txs
if len(selected) > txsThrottleConfig.MaxNumTxsPerBlockLimit {
utils.Logger().Info().Str("txId", tx.Hash().Hex()).Int("MaxNumTxsPerBlockLimit", txsThrottleConfig.MaxNumTxsPerBlockLimit).Msg("Throttling tx with max num txs per block limit")
return sender, shardingconfig.TxUnselect
}
// throttle a single sender sending too many transactions in one block
if tx.Value().Cmp(txsThrottleConfig.MaxTxAmountLimit) > 0 {
utils.Logger().Info().Str("txId", tx.Hash().Hex()).Uint64("MaxTxAmountLimit", txsThrottleConfig.MaxTxAmountLimit.Uint64()).Uint64("txAmount", tx.Value().Uint64()).Msg("Throttling tx with max amount limit")
return sender, shardingconfig.TxInvalid
}
// throttle too large transaction
var numTxsPastHour uint64
for _, blockTxsCounts := range recentTxsStats {
numTxsPastHour += blockTxsCounts[sender]
}
if numTxsPastHour >= txsThrottleConfig.MaxNumRecentTxsPerAccountLimit {
utils.Logger().Info().Str("txId", tx.Hash().Hex()).Uint64("MaxNumRecentTxsPerAccountLimit", txsThrottleConfig.MaxNumRecentTxsPerAccountLimit).Msg("Throttling tx with max txs per account in a single block limit")
return sender, shardingconfig.TxInvalid
}
return sender, shardingconfig.TxSelect
}
// SelectTransactionsForNewBlock selects transactions for new block.
func (w *Worker) SelectTransactionsForNewBlock(newBlockNum uint64, txs types.Transactions, recentTxsStats types.RecentTxsStats, txsThrottleConfig *shardingconfig.TxsThrottleConfig, coinbase common.Address) (types.Transactions, types.Transactions, types.Transactions) {
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit())
}
selected := types.Transactions{}
unselected := types.Transactions{}
invalid := types.Transactions{}
for _, tx := range txs {
if tx.ShardID() != w.chain.ShardID() {
invalid = append(invalid, tx)
continue
}
// If we don't have enough gas for any further transactions then we're done
if w.current.gasPool.Gas() < params.TxGas {
utils.Logger().Info().Str("Not enough gas for further transactions, have", w.current.gasPool.String()).Uint64("want", params.TxGas)
unselected = append(unselected, tx)
continue
}
sender, flag := w.throttleTxs(selected, recentTxsStats, txsThrottleConfig, tx)
switch flag {
case shardingconfig.TxUnselect:
unselected = append(unselected, tx)
case shardingconfig.TxInvalid:
invalid = append(invalid, tx)
case shardingconfig.TxSelect:
if tx.GasPrice().Uint64() == 0 {
invalid = append(invalid, tx)
} else {
snap := w.current.state.Snapshot()
_, err := w.commitTransaction(tx, coinbase)
if err != nil {
w.current.state.RevertToSnapshot(snap)
invalid = append(invalid, tx)
utils.Logger().Error().Err(err).Str("txId", tx.Hash().Hex()).Msg("Commit transaction error")
} else {
selected = append(selected, tx)
// handle the case when msg was not able to extracted from tx
if len(sender.String()) > 0 {
recentTxsStats[newBlockNum][sender]++
}
}
}
}
// log invalid or unselected txs
if flag == shardingconfig.TxUnselect || flag == shardingconfig.TxInvalid {
utils.Logger().Info().Str("txId", tx.Hash().Hex()).Str("txThrottleFlag", flag.String()).Msg("Transaction Throttle flag")
}
utils.Logger().Info().Str("txId", tx.Hash().Hex()).Uint64("txGasLimit", tx.Gas()).Msg("Transaction gas limit info")
}
utils.Logger().Info().Uint64("newBlockNum", newBlockNum).Int("newTxns", len(selected)).Uint64("blockGasLimit", w.current.header.GasLimit()).Uint64("blockGasUsed", w.current.header.GasUsed()).Msg("Block gas limit and usage info")
return selected, unselected, invalid
}
// SelectStakingTransactionsForNewBlock selects staking transactions for new block.
func (w *Worker) SelectStakingTransactionsForNewBlock(
newBlockNum uint64, txs staking.StakingTransactions,
coinbase common.Address) (staking.StakingTransactions, staking.StakingTransactions, staking.StakingTransactions) {
// only beaconchain process staking transaction
if w.chain.ShardID() != shard.BeaconChainShardID {
utils.Logger().Warn().Msgf("Invalid shardID: %v", w.chain.ShardID())
return nil, nil, nil
}
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit())
}
selected := staking.StakingTransactions{}
// TODO: chao add total gas fee checking when needed
unselected := staking.StakingTransactions{}
invalid := staking.StakingTransactions{}
for _, tx := range txs {
snap := w.current.state.Snapshot()
_, err := w.commitStakingTransaction(tx, coinbase)
if err != nil {
w.current.state.RevertToSnapshot(snap)
invalid = append(invalid, tx)
utils.Logger().Error().Err(err).Str("stakingTxId", tx.Hash().Hex()).Msg("Commit staking transaction error")
} else {
selected = append(selected, tx)
utils.Logger().Info().Str("stakingTxId", tx.Hash().Hex()).Uint64("txGasLimit", tx.Gas()).Msg("StakingTransaction gas limit info")
}
}
utils.Logger().Info().Uint64("newBlockNum", newBlockNum).Uint64("blockGasLimit",
w.current.header.GasLimit()).Uint64("blockGasUsed",
w.current.header.GasUsed()).Msg("[SelectStakingTransaction] Block gas limit and usage info")
return selected, unselected, invalid
}
func (w *Worker) commitStakingTransaction(tx *staking.StakingTransaction, coinbase common.Address) ([]*types.Log, error) {
snap := w.current.state.Snapshot()
gasUsed := w.current.header.GasUsed()
receipt, _, err :=
core.ApplyStakingTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &gasUsed, vm.Config{})
w.current.header.SetGasUsed(gasUsed)
if err != nil {
w.current.state.RevertToSnapshot(snap)
return nil, err
}
if receipt == nil {
return nil, fmt.Errorf("nil staking receipt")
}
w.current.stkingTxs = append(w.current.stkingTxs, tx)
w.current.receipts = append(w.current.receipts, receipt)
return receipt.Logs, nil
}
func (w *Worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
snap := w.current.state.Snapshot()
gasUsed := w.current.header.GasUsed()
receipt, cx, _, err := core.ApplyTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &gasUsed, vm.Config{})
w.current.header.SetGasUsed(gasUsed)
if err != nil {
w.current.state.RevertToSnapshot(snap)
utils.Logger().Error().Err(err).Str("stakingTxId", tx.Hash().Hex()).Msg("Offchain ValidatorMap Read/Write Error")
return nil, err
}
if receipt == nil {
utils.Logger().Warn().Interface("tx", tx).Interface("cx", cx).Msg("Receipt is Nil!")
return nil, fmt.Errorf("Receipt is Nil")
}
w.current.txs = append(w.current.txs, tx)
w.current.receipts = append(w.current.receipts, receipt)
if cx != nil {
w.current.outcxs = append(w.current.outcxs, cx)
}
return receipt.Logs, nil
}
// CommitTransactions commits transactions.
func (w *Worker) CommitTransactions(txs types.Transactions, stakingTxns staking.StakingTransactions, coinbase common.Address) error {
// Must update to the correct current state before processing potential txns
if err := w.UpdateCurrent(coinbase); err != nil {
utils.Logger().Error().
Err(err).
Msg("Failed updating worker's state before committing txns")
return err
}
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit())
}
for _, tx := range txs {
snap := w.current.state.Snapshot()
_, err := w.commitTransaction(tx, coinbase)
if err != nil {
w.current.state.RevertToSnapshot(snap)
return err
}
}
for _, tx := range stakingTxns {
snap := w.current.state.Snapshot()
_, err := w.commitStakingTransaction(tx, coinbase)
if err != nil {
w.current.state.RevertToSnapshot(snap)
return err
}
}
return nil
}
// CommitReceipts commits a list of already verified incoming cross shard receipts
func (w *Worker) CommitReceipts(receiptsList []*types.CXReceiptsProof) error {
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit())
}
if len(receiptsList) == 0 {
w.current.header.SetIncomingReceiptHash(types.EmptyRootHash)
} else {
w.current.header.SetIncomingReceiptHash(types.DeriveSha(types.CXReceiptsProofs(receiptsList)))
}
for _, cx := range receiptsList {
err := core.ApplyIncomingReceipt(w.config, w.current.state, w.current.header, cx)
if err != nil {
return ctxerror.New("cannot apply receiptsList").WithCause(err)
}
}
for _, cx := range receiptsList {
w.current.incxs = append(w.current.incxs, cx)
}
return nil
}
// UpdateCurrent updates the current environment with the current state and header.
func (w *Worker) UpdateCurrent(coinbase common.Address) error {
parent := w.chain.CurrentBlock()
num := parent.Number()
timestamp := time.Now().Unix()
epoch := w.GetNewEpoch()
header := w.factory.NewHeader(epoch).With().
ParentHash(parent.Hash()).
Number(num.Add(num, common.Big1)).
GasLimit(core.CalcGasLimit(parent, w.gasFloor, w.gasCeil)).
Time(big.NewInt(timestamp)).
ShardID(w.chain.ShardID()).
Coinbase(coinbase).
Header()
return w.makeCurrent(parent, header)
}
// makeCurrent creates a new environment for the current cycle.
func (w *Worker) makeCurrent(parent *types.Block, header *block.Header) error {
state, err := w.chain.StateAt(parent.Root())
if err != nil {
return err
}
env := &environment{
state: state,
header: header,
}
w.current = env
return nil
}
// GetCurrentState gets the current state.
func (w *Worker) GetCurrentState() *state.DB {
return w.current.state
}
// GetNewEpoch gets the current epoch.
func (w *Worker) GetNewEpoch() *big.Int {
parent := w.chain.CurrentBlock()
epoch := new(big.Int).Set(parent.Header().Epoch())
// TODO: Don't depend on sharding state for epoch change.
if len(parent.Header().ShardState()) > 0 && parent.NumberU64() != 0 {
// ... except if parent has a resharding assignment it increases by 1.
epoch = epoch.Add(epoch, common.Big1)
}
return epoch
}
// GetCurrentReceipts get the receipts generated starting from the last state.
func (w *Worker) GetCurrentReceipts() []*types.Receipt {
return w.current.receipts
}
// OutgoingReceipts get the receipts generated starting from the last state.
func (w *Worker) OutgoingReceipts() []*types.CXReceipt {
return w.current.outcxs
}
// IncomingReceipts get incoming receipts in destination shard that is received from source shard
func (w *Worker) IncomingReceipts() []*types.CXReceiptsProof {
return w.current.incxs
}
// ProposeShardStateWithoutBeaconSync proposes the next shard state for next epoch.
func (w *Worker) ProposeShardStateWithoutBeaconSync() shard.State {
if !shard.Schedule.IsLastBlock(w.current.header.Number().Uint64()) {
return nil
}
shardState, _ := committee.WithStakingEnabled.Compute(
new(big.Int).Add(w.current.header.Epoch(), common.Big1), *w.config, nil,
)
return shardState
}
// FinalizeNewBlock generate a new block for the next consensus round.
func (w *Worker) FinalizeNewBlock(sig []byte, signers []byte, viewID uint64, coinbase common.Address, crossLinks types.CrossLinks, shardState shard.State) (*types.Block, error) {
if len(sig) > 0 && len(signers) > 0 {
sig2 := w.current.header.LastCommitSignature()
copy(sig2[:], sig[:])
w.current.header.SetLastCommitSignature(sig2)
w.current.header.SetLastCommitBitmap(signers)
}
w.current.header.SetCoinbase(coinbase)
w.current.header.SetViewID(new(big.Int).SetUint64(viewID))
// Cross Links
if crossLinks != nil && len(crossLinks) != 0 {
crossLinkData, err := rlp.EncodeToBytes(crossLinks)
if err == nil {
utils.Logger().Debug().
Uint64("blockNum", w.current.header.Number().Uint64()).
Int("numCrossLinks", len(crossLinks)).
Msg("Successfully proposed cross links into new block")
w.current.header.SetCrossLinks(crossLinkData)
} else {
utils.Logger().Debug().Err(err).Msg("Failed to encode proposed cross links")
return nil, err
}
}
// Shard State
if shardState != nil && len(shardState) != 0 {
w.current.header.SetShardStateHash(shardState.Hash())
shardStateData, err := rlp.EncodeToBytes(shardState)
if err == nil {
w.current.header.SetShardState(shardStateData)
} else {
utils.Logger().Debug().Err(err).Msg("Failed to encode proposed shard state")
return nil, err
}
}
s := w.current.state.Copy()
copyHeader := types.CopyHeader(w.current.header)
block, err := w.engine.Finalize(w.chain, copyHeader, s, w.current.txs, w.current.receipts, w.current.outcxs, w.current.incxs, w.current.stkingTxs)
if err != nil {
return nil, ctxerror.New("cannot finalize block").WithCause(err)
}
return block, nil
}
// New create a new worker object.
func New(config *params.ChainConfig, chain *core.BlockChain, engine consensus_engine.Engine) *Worker {
worker := &Worker{
config: config,
factory: blockfactory.NewFactory(config),
chain: chain,
engine: engine,
}
worker.gasFloor = 80000000
worker.gasCeil = 120000000
parent := worker.chain.CurrentBlock()
num := parent.Number()
timestamp := time.Now().Unix()
epoch := worker.GetNewEpoch()
header := worker.factory.NewHeader(epoch).With().
ParentHash(parent.Hash()).
Number(num.Add(num, common.Big1)).
GasLimit(core.CalcGasLimit(parent, worker.gasFloor, worker.gasCeil)).
Time(big.NewInt(timestamp)).
ShardID(worker.chain.ShardID()).
Header()
worker.makeCurrent(parent, header)
return worker
}