The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/api/service/legacysync/syncing.go

1325 lines
39 KiB

package legacysync
import (
"bytes"
"encoding/hex"
"fmt"
"math/rand"
"reflect"
"sort"
"strconv"
"sync"
"time"
"github.com/Workiva/go-datastructures/queue"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
"github.com/harmony-one/harmony/api/service/legacysync/downloader"
pb "github.com/harmony-one/harmony/api/service/legacysync/downloader/proto"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/chain"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/p2p"
libp2p_peer "github.com/libp2p/go-libp2p/core/peer"
"github.com/pkg/errors"
)
// Constants for syncing.
const (
downloadBlocksRetryLimit = 10 // downloadBlocks service retry limit
RegistrationNumber = 3
SyncingPortDifference = 3000
inSyncThreshold = 0 // when peerBlockHeight - myBlockHeight <= inSyncThreshold, it's ready to join consensus
SyncLoopBatchSize uint32 = 30 // maximum size for one query of block hashes
verifyHeaderBatchSize uint64 = 100 // block chain header verification batch size (not used for now)
LastMileBlocksSize = 50
// after cutting off a number of connected peers, the result number of peers
// shall be between numPeersLowBound and numPeersHighBound
NumPeersLowBound = 3
numPeersHighBound = 5
downloadTaskBatch = 5
//LoopMinTime sync loop must take at least as this value, otherwise it waits for it
LoopMinTime = 0
)
// SyncPeerConfig is peer config to sync.
type SyncPeerConfig struct {
peer p2p.Peer
peerHash []byte
client *downloader.Client
blockHashes [][]byte // block hashes before node doing sync
newBlocks []*types.Block // blocks after node doing sync
mux sync.Mutex
}
// GetClient returns client pointer of downloader.Client
func (peerConfig *SyncPeerConfig) GetClient() *downloader.Client {
return peerConfig.client
}
// IsEqual checks the equality between two sync peers
func (peerConfig *SyncPeerConfig) IsEqual(pc2 *SyncPeerConfig) bool {
return peerConfig.peer.IP == pc2.peer.IP && peerConfig.peer.Port == pc2.peer.Port
}
// SyncBlockTask is the task struct to sync a specific block.
type SyncBlockTask struct {
index int
blockHash []byte
}
type syncBlockTasks []SyncBlockTask
func (tasks syncBlockTasks) blockHashes() [][]byte {
hashes := make([][]byte, 0, len(tasks))
for _, task := range tasks {
hash := make([]byte, len(task.blockHash))
copy(hash, task.blockHash)
hashes = append(hashes, task.blockHash)
}
return hashes
}
func (tasks syncBlockTasks) blockHashesStr() []string {
hashes := make([]string, 0, len(tasks))
for _, task := range tasks {
hash := hex.EncodeToString(task.blockHash)
hashes = append(hashes, hash)
}
return hashes
}
func (tasks syncBlockTasks) indexes() []int {
indexes := make([]int, 0, len(tasks))
for _, task := range tasks {
indexes = append(indexes, task.index)
}
return indexes
}
// SyncConfig contains an array of SyncPeerConfig.
type SyncConfig struct {
// mtx locks peers, and *SyncPeerConfig pointers in peers.
// SyncPeerConfig itself is guarded by its own mutex.
mtx sync.RWMutex
peers []*SyncPeerConfig
shardID uint32
selfPeerID libp2p_peer.ID
}
func NewSyncConfig(shardID uint32, selfPeerID libp2p_peer.ID, peers []*SyncPeerConfig) *SyncConfig {
return &SyncConfig{
peers: peers,
shardID: shardID,
selfPeerID: selfPeerID,
}
}
func (sc *SyncConfig) ShardID() uint32 {
return sc.shardID
}
// AddPeer adds the given sync peer.
func (sc *SyncConfig) AddPeer(peer *SyncPeerConfig) {
sc.mtx.Lock()
defer sc.mtx.Unlock()
// Ensure no duplicate peers
for _, p2 := range sc.peers {
if peer.IsEqual(p2) {
return
}
if peer.peer.PeerID == sc.selfPeerID {
return
}
}
sc.peers = append(sc.peers, peer)
}
func (sc *SyncConfig) GetPeers() []*SyncPeerConfig {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
out := make([]*SyncPeerConfig, len(sc.peers))
copy(out, sc.peers)
return out
}
// ForEachPeer calls the given function with each peer.
// It breaks the iteration iff the function returns true.
func (sc *SyncConfig) ForEachPeer(f func(peer *SyncPeerConfig) (brk bool)) {
sc.mtx.RLock()
peers := make([]*SyncPeerConfig, len(sc.peers))
copy(peers, sc.peers)
sc.mtx.RUnlock()
for _, peer := range peers {
if f(peer) {
break
}
}
}
func (sc *SyncConfig) PeersCount() int {
if sc == nil {
return 0
}
sc.mtx.RLock()
defer sc.mtx.RUnlock()
return len(sc.peers)
}
// RemovePeer removes a peer from SyncConfig
func (sc *SyncConfig) RemovePeer(peer *SyncPeerConfig, reason string) {
sc.mtx.Lock()
defer sc.mtx.Unlock()
closeReason := fmt.Sprintf("remove peer (reason: %s)", reason)
peer.client.Close(closeReason)
for i, p := range sc.peers {
if p == peer {
sc.peers = append(sc.peers[:i], sc.peers[i+1:]...)
break
}
}
utils.Logger().Info().
Str("peerIP", peer.peer.IP).
Str("peerPortMsg", peer.peer.Port).
Str("reason", reason).
Msg("[SYNC] remove GRPC peer")
}
// CreateStateSync returns the implementation of StateSyncInterface interface.
func CreateStateSync(bc blockChain, ip string, port string, peerHash [20]byte, peerID libp2p_peer.ID, isExplorer bool, role nodeconfig.Role) *StateSync {
stateSync := &StateSync{}
stateSync.blockChain = bc
stateSync.selfip = ip
stateSync.selfport = port
stateSync.selfPeerHash = peerHash
stateSync.commonBlocks = make(map[int]*types.Block)
stateSync.lastMileBlocks = []*types.Block{}
stateSync.isExplorer = isExplorer
stateSync.syncConfig = NewSyncConfig(bc.ShardID(), peerID, nil)
stateSync.syncStatus = newSyncStatus(role)
return stateSync
}
// Small subset from Blockchain struct.
type blockChain interface {
CurrentBlock() *types.Block
ShardID() uint32
}
// StateSync is the struct that implements StateSyncInterface.
type StateSync struct {
blockChain blockChain
selfip string
selfport string
selfPeerHash [20]byte // hash of ip and address combination
commonBlocks map[int]*types.Block
lastMileBlocks []*types.Block // last mile blocks to catch up with the consensus
syncConfig *SyncConfig
isExplorer bool
stateSyncTaskQueue *queue.Queue
syncMux sync.Mutex
lastMileMux sync.Mutex
syncStatus syncStatus
}
func (ss *StateSync) IntoEpochSync() *EpochSync {
return &EpochSync{
beaconChain: ss.blockChain,
selfip: ss.selfip,
selfport: ss.selfport,
selfPeerHash: ss.selfPeerHash,
commonBlocks: ss.commonBlocks,
lastMileBlocks: ss.lastMileBlocks,
syncConfig: ss.syncConfig,
isExplorer: ss.isExplorer,
stateSyncTaskQueue: ss.stateSyncTaskQueue,
syncMux: sync.Mutex{},
lastMileMux: sync.Mutex{},
syncStatus: ss.syncStatus.Clone(),
}
}
func (ss *StateSync) purgeAllBlocksFromCache() {
ss.lastMileMux.Lock()
ss.lastMileBlocks = nil
ss.lastMileMux.Unlock()
ss.syncMux.Lock()
defer ss.syncMux.Unlock()
ss.commonBlocks = make(map[int]*types.Block)
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
configPeer.blockHashes = nil
configPeer.newBlocks = nil
return
})
}
func (ss *StateSync) purgeOldBlocksFromCache() {
ss.syncMux.Lock()
defer ss.syncMux.Unlock()
ss.commonBlocks = make(map[int]*types.Block)
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
configPeer.blockHashes = nil
return
})
}
// AddLastMileBlock add the latest a few block into queue for syncing
// only keep the latest blocks with size capped by LastMileBlocksSize
func (ss *StateSync) AddLastMileBlock(block *types.Block) {
ss.lastMileMux.Lock()
defer ss.lastMileMux.Unlock()
if ss.lastMileBlocks != nil {
if len(ss.lastMileBlocks) >= LastMileBlocksSize {
ss.lastMileBlocks = ss.lastMileBlocks[1:]
}
ss.lastMileBlocks = append(ss.lastMileBlocks, block)
}
}
// CloseConnections close grpc connections for state sync clients
func (sc *SyncConfig) CloseConnections() {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for _, pc := range sc.peers {
pc.client.Close("close all connections")
}
}
// FindPeerByHash returns the peer with the given hash, or nil if not found.
func (sc *SyncConfig) FindPeerByHash(peerHash []byte) *SyncPeerConfig {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for _, pc := range sc.peers {
if bytes.Equal(pc.peerHash, peerHash) {
return pc
}
}
return nil
}
// AddNewBlock will add newly received block into state syncing queue
func (ss *StateSync) AddNewBlock(peerHash []byte, block *types.Block) {
pc := ss.syncConfig.FindPeerByHash(peerHash)
if pc == nil {
// Received a block with no active peer; just ignore.
return
}
// TODO ek – we shouldn't mess with SyncPeerConfig's mutex.
// Factor this into a method, like pc.AddNewBlock(block)
pc.mux.Lock()
defer pc.mux.Unlock()
pc.newBlocks = append(pc.newBlocks, block)
utils.Logger().Debug().
Int("total", len(pc.newBlocks)).
Uint64("blockHeight", block.NumberU64()).
Msg("[SYNC] new block received")
}
// CreateTestSyncPeerConfig used for testing.
func CreateTestSyncPeerConfig(client *downloader.Client, blockHashes [][]byte) *SyncPeerConfig {
return &SyncPeerConfig{
client: client,
blockHashes: blockHashes,
}
}
// CompareSyncPeerConfigByblockHashes compares two SyncPeerConfig by blockHashes.
func CompareSyncPeerConfigByblockHashes(a *SyncPeerConfig, b *SyncPeerConfig) int {
if len(a.blockHashes) != len(b.blockHashes) {
if len(a.blockHashes) < len(b.blockHashes) {
return -1
}
return 1
}
for id := range a.blockHashes {
if !reflect.DeepEqual(a.blockHashes[id], b.blockHashes[id]) {
return bytes.Compare(a.blockHashes[id], b.blockHashes[id])
}
}
return 0
}
// BlockWithSig the serialization structure for request DownloaderRequest_BLOCKWITHSIG
// The block is encoded as block + commit signature
type BlockWithSig struct {
Block *types.Block
CommitSigAndBitmap []byte
}
// GetBlocks gets blocks by calling grpc request to the corresponding peer.
func (peerConfig *SyncPeerConfig) GetBlocks(hashes [][]byte) ([][]byte, error) {
response := peerConfig.client.GetBlocksAndSigs(hashes)
if response == nil {
return nil, ErrGetBlock
}
return response.Payload, nil
}
// CreateSyncConfig creates SyncConfig for StateSync object.
func (ss *StateSync) CreateSyncConfig(peers []p2p.Peer, shardID uint32, selfPeerID libp2p_peer.ID, waitForEachPeerToConnect bool) error {
var err error
ss.syncConfig, err = createSyncConfig(ss.syncConfig, peers, shardID, selfPeerID, waitForEachPeerToConnect)
return err
}
// checkPeersDuplicity checks whether there are duplicates in p2p.Peer
func checkPeersDuplicity(ps []p2p.Peer) error {
type peerDupID struct {
ip string
port string
}
m := make(map[peerDupID]struct{})
for _, p := range ps {
dip := peerDupID{p.IP, p.Port}
if _, ok := m[dip]; ok {
return fmt.Errorf("duplicate peer [%v:%v]", p.IP, p.Port)
}
m[dip] = struct{}{}
}
return nil
}
// limitNumPeers limits number of peers to release some server end sources.
func limitNumPeers(ps []p2p.Peer, randSeed int64) (int, []p2p.Peer) {
targetSize := calcNumPeersWithBound(len(ps), NumPeersLowBound, numPeersHighBound)
if len(ps) <= targetSize {
return len(ps), ps
}
r := rand.New(rand.NewSource(randSeed))
r.Shuffle(len(ps), func(i, j int) { ps[i], ps[j] = ps[j], ps[i] })
return targetSize, ps
}
// Peers are expected to limited at half of the size, capped between lowBound and highBound.
func calcNumPeersWithBound(size int, lowBound, highBound int) int {
if size < lowBound {
return size
}
expLen := size / 2
if expLen < lowBound {
expLen = lowBound
}
if expLen > highBound {
expLen = highBound
}
return expLen
}
// GetActivePeerNumber returns the number of active peers
func (ss *StateSync) GetActivePeerNumber() int {
if ss.syncConfig == nil {
return 0
}
// len() is atomic; no need to hold mutex.
return len(ss.syncConfig.peers)
}
// getHowManyMaxConsensus returns max number of consensus nodes and the first ID of consensus group.
// Assumption: all peers are sorted by CompareSyncPeerConfigByBlockHashes first.
// Caller shall ensure mtx is locked for reading.
func (sc *SyncConfig) getHowManyMaxConsensus() (int, int) {
// As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively.
curCount := 0
curFirstID := -1
maxCount := 0
maxFirstID := -1
for i := range sc.peers {
if curFirstID == -1 || CompareSyncPeerConfigByblockHashes(sc.peers[curFirstID], sc.peers[i]) != 0 {
curCount = 1
curFirstID = i
} else {
curCount++
}
if curCount >= maxCount {
maxCount = curCount
maxFirstID = curFirstID
}
}
return maxFirstID, maxCount
}
// InitForTesting used for testing.
func (sc *SyncConfig) InitForTesting(client *downloader.Client, blockHashes [][]byte) {
sc.mtx.RLock()
defer sc.mtx.RUnlock()
for i := range sc.peers {
sc.peers[i].blockHashes = blockHashes
sc.peers[i].client = client
}
}
// cleanUpPeers cleans up all peers whose blockHashes are not equal to
// consensus block hashes. Caller shall ensure mtx is locked for RW.
func (sc *SyncConfig) cleanUpPeers(maxFirstID int) {
fixedPeer := sc.peers[maxFirstID]
var removedPeers int
for i := 0; i < len(sc.peers); i++ {
if CompareSyncPeerConfigByblockHashes(fixedPeer, sc.peers[i]) != 0 {
// TODO: move it into a util delete func.
// See tip https://github.com/golang/go/wiki/SliceTricks
// Close the client and remove the peer out of the
sc.peers[i].client.Close("cleanup peers")
copy(sc.peers[i:], sc.peers[i+1:])
sc.peers[len(sc.peers)-1] = nil
sc.peers = sc.peers[:len(sc.peers)-1]
removedPeers++
}
}
utils.Logger().Info().Int("removed peers", removedPeers).Msg("[SYNC] post cleanUpPeers")
}
// GetBlockHashesConsensusAndCleanUp selects the most common peer config based on their block hashes to download/sync.
// Note that choosing the most common peer config does not guarantee that the blocks to be downloaded are the correct ones.
// The subsequent node syncing steps of verifying the block header chain will give such confirmation later.
// If later block header verification fails with the sync peer config chosen here, the entire sync loop gets retried with a new peer set.
func (sc *SyncConfig) GetBlockHashesConsensusAndCleanUp() error {
sc.mtx.Lock()
defer sc.mtx.Unlock()
// Sort all peers by the blockHashes.
sort.Slice(sc.peers, func(i, j int) bool {
return CompareSyncPeerConfigByblockHashes(sc.peers[i], sc.peers[j]) == -1
})
maxFirstID, maxCount := sc.getHowManyMaxConsensus()
if maxFirstID == -1 {
return errors.New("invalid peer index -1 for block hashes query")
}
utils.Logger().Info().
Int("maxFirstID", maxFirstID).
Str("targetPeerIP", sc.peers[maxFirstID].peer.IP).
Int("maxCount", maxCount).
Int("hashSize", len(sc.peers[maxFirstID].blockHashes)).
Msg("[SYNC] block consensus hashes")
sc.cleanUpPeers(maxFirstID)
return nil
}
// getConsensusHashes gets all hashes needed to download.
func (ss *StateSync) getConsensusHashes(startHash []byte, size uint32) error {
var wg sync.WaitGroup
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
wg.Add(1)
go func() {
defer wg.Done()
response := peerConfig.client.GetBlockHashes(startHash, size, ss.selfip, ss.selfport)
if response == nil {
utils.Logger().Warn().
Str("peerIP", peerConfig.peer.IP).
Str("peerPort", peerConfig.peer.Port).
Msg("[SYNC] getConsensusHashes Nil Response")
ss.syncConfig.RemovePeer(peerConfig, fmt.Sprintf("StateSync %d: nil response for GetBlockHashes", ss.blockChain.ShardID()))
return
}
utils.Logger().Info().Uint32("queried blockHash size", size).
Int("got blockHashSize", len(response.Payload)).
Str("PeerIP", peerConfig.peer.IP).
Msg("[SYNC] GetBlockHashes")
if len(response.Payload) > int(size+1) {
utils.Logger().Warn().
Uint32("requestSize", size).
Int("respondSize", len(response.Payload)).
Msg("[SYNC] getConsensusHashes: receive more blockHashes than requested!")
peerConfig.blockHashes = response.Payload[:size+1]
} else {
peerConfig.blockHashes = response.Payload
}
}()
return
})
wg.Wait()
if err := ss.syncConfig.GetBlockHashesConsensusAndCleanUp(); err != nil {
return err
}
utils.Logger().Info().Msg("[SYNC] Finished getting consensus block hashes")
return nil
}
func (ss *StateSync) generateStateSyncTaskQueue(bc core.BlockChain) {
ss.stateSyncTaskQueue = queue.New(0)
ss.syncConfig.ForEachPeer(func(configPeer *SyncPeerConfig) (brk bool) {
for id, blockHash := range configPeer.blockHashes {
if err := ss.stateSyncTaskQueue.Put(SyncBlockTask{index: id, blockHash: blockHash}); err != nil {
utils.Logger().Warn().
Err(err).
Int("taskIndex", id).
Str("taskBlock", hex.EncodeToString(blockHash)).
Msg("[SYNC] generateStateSyncTaskQueue: cannot add task")
}
}
brk = true
return
})
utils.Logger().Info().Int64("length", ss.stateSyncTaskQueue.Len()).Msg("[SYNC] generateStateSyncTaskQueue: finished")
}
// downloadBlocks downloads blocks from state sync task queue.
func (ss *StateSync) downloadBlocks(bc core.BlockChain) {
// Initialize blockchain
var wg sync.WaitGroup
count := 0
taskQueue := downloadTaskQueue{ss.stateSyncTaskQueue}
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
wg.Add(1)
go func() {
defer wg.Done()
for !taskQueue.empty() {
tasks, err := taskQueue.poll(downloadTaskBatch, time.Millisecond)
if err != nil || len(tasks) == 0 {
if err == queue.ErrDisposed {
continue
}
utils.Logger().Error().Err(err).Msg("[SYNC] downloadBlocks: ss.stateSyncTaskQueue poll timeout")
break
}
payload, err := peerConfig.GetBlocks(tasks.blockHashes())
if err != nil {
utils.Logger().Warn().Err(err).
Str("peerID", peerConfig.peer.IP).
Str("port", peerConfig.peer.Port).
Msg("[SYNC] downloadBlocks: GetBlocks failed")
ss.syncConfig.RemovePeer(peerConfig, fmt.Sprintf("StateSync %d: error returned for GetBlocks: %s", ss.blockChain.ShardID(), err.Error()))
return
}
if len(payload) == 0 {
count++
utils.Logger().Error().Int("failNumber", count).
Msg("[SYNC] downloadBlocks: no more retrievable blocks")
if count > downloadBlocksRetryLimit {
break
}
if err := taskQueue.put(tasks); err != nil {
utils.Logger().Warn().
Err(err).
Interface("taskIndexes", tasks.indexes()).
Interface("taskBlockes", tasks.blockHashesStr()).
Msg("downloadBlocks: cannot add task")
}
continue
}
failedTasks := ss.handleBlockSyncResult(payload, tasks)
if len(failedTasks) != 0 {
count++
if count > downloadBlocksRetryLimit {
break
}
if err := taskQueue.put(failedTasks); err != nil {
utils.Logger().Warn().
Err(err).
Interface("taskIndexes", failedTasks.indexes()).
Interface("taskBlockes", tasks.blockHashesStr()).
Msg("cannot add task")
}
continue
}
}
}()
return
})
wg.Wait()
utils.Logger().Info().Msg("[SYNC] downloadBlocks: finished")
}
func (ss *StateSync) handleBlockSyncResult(payload [][]byte, tasks syncBlockTasks) syncBlockTasks {
if len(payload) > len(tasks) {
utils.Logger().Warn().
Err(errors.New("unexpected number of block delivered")).
Int("expect", len(tasks)).
Int("got", len(payload))
return tasks
}
var failedTasks syncBlockTasks
if len(payload) < len(tasks) {
utils.Logger().Warn().
Err(errors.New("unexpected number of block delivered")).
Int("expect", len(tasks)).
Int("got", len(payload))
failedTasks = append(failedTasks, tasks[len(payload):]...)
}
for i, blockBytes := range payload {
// For forward compatibility at server side, it can be types.block or BlockWithSig
blockObj, err := RlpDecodeBlockOrBlockWithSig(blockBytes)
if err != nil {
utils.Logger().Warn().
Err(err).
Int("taskIndex", tasks[i].index).
Str("taskBlock", hex.EncodeToString(tasks[i].blockHash)).
Msg("download block")
failedTasks = append(failedTasks, tasks[i])
continue
}
gotHash := blockObj.Hash()
if !bytes.Equal(gotHash[:], tasks[i].blockHash) {
utils.Logger().Warn().
Err(errors.New("wrong block delivery")).
Str("expectHash", hex.EncodeToString(tasks[i].blockHash)).
Str("gotHash", hex.EncodeToString(gotHash[:]))
failedTasks = append(failedTasks, tasks[i])
continue
}
ss.syncMux.Lock()
ss.commonBlocks[tasks[i].index] = blockObj
ss.syncMux.Unlock()
}
return failedTasks
}
// RlpDecodeBlockOrBlockWithSig decode payload to types.Block or BlockWithSig.
// Return the block with commitSig if set.
func RlpDecodeBlockOrBlockWithSig(payload []byte) (*types.Block, error) {
var block *types.Block
if err := rlp.DecodeBytes(payload, &block); err == nil {
// received payload as *types.Block
return block, nil
}
var bws BlockWithSig
if err := rlp.DecodeBytes(payload, &bws); err == nil {
block := bws.Block
block.SetCurrentCommitSig(bws.CommitSigAndBitmap)
return block, nil
}
return nil, errors.New("failed to decode to either types.Block or BlockWithSig")
}
// downloadTaskQueue is wrapper around Queue with item to be SyncBlockTask
type downloadTaskQueue struct {
q *queue.Queue
}
func (queue downloadTaskQueue) poll(num int64, timeOut time.Duration) (syncBlockTasks, error) {
items, err := queue.q.Poll(num, timeOut)
if err != nil {
return nil, err
}
tasks := make(syncBlockTasks, 0, len(items))
for _, item := range items {
task := item.(SyncBlockTask)
tasks = append(tasks, task)
}
return tasks, nil
}
func (queue downloadTaskQueue) put(tasks syncBlockTasks) error {
for _, task := range tasks {
if err := queue.q.Put(task); err != nil {
return err
}
}
return nil
}
func (queue downloadTaskQueue) empty() bool {
return queue.q.Empty()
}
// CompareBlockByHash compares two block by hash, it will be used in sort the blocks
func CompareBlockByHash(a *types.Block, b *types.Block) int {
ha := a.Hash()
hb := b.Hash()
return bytes.Compare(ha[:], hb[:])
}
// GetHowManyMaxConsensus will get the most common blocks and the first such blockID
func GetHowManyMaxConsensus(blocks []*types.Block) (int, int) {
// As all peers are sorted by their blockHashes, all equal blockHashes should come together and consecutively.
curCount := 0
curFirstID := -1
maxCount := 0
maxFirstID := -1
for i := range blocks {
if curFirstID == -1 || CompareBlockByHash(blocks[curFirstID], blocks[i]) != 0 {
curCount = 1
curFirstID = i
} else {
curCount++
}
if curCount > maxCount {
maxCount = curCount
maxFirstID = curFirstID
}
}
return maxFirstID, maxCount
}
func (ss *StateSync) getMaxConsensusBlockFromParentHash(parentHash common.Hash) *types.Block {
var (
candidateBlocks []*types.Block
candidateLock sync.Mutex
)
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
peerConfig.mux.Lock()
defer peerConfig.mux.Unlock()
for _, block := range peerConfig.newBlocks {
ph := block.ParentHash()
if bytes.Equal(ph[:], parentHash[:]) {
candidateLock.Lock()
candidateBlocks = append(candidateBlocks, block)
candidateLock.Unlock()
break
}
}
return
})
if len(candidateBlocks) == 0 {
return nil
}
// Sort by blockHashes.
sort.Slice(candidateBlocks, func(i, j int) bool {
return CompareBlockByHash(candidateBlocks[i], candidateBlocks[j]) == -1
})
maxFirstID, maxCount := GetHowManyMaxConsensus(candidateBlocks)
hash := candidateBlocks[maxFirstID].Hash()
utils.Logger().Debug().
Hex("parentHash", parentHash[:]).
Hex("hash", hash[:]).
Int("maxCount", maxCount).
Msg("[SYNC] Find block with matching parenthash")
return candidateBlocks[maxFirstID]
}
func (ss *StateSync) getBlockFromOldBlocksByParentHash(parentHash common.Hash) *types.Block {
for _, block := range ss.commonBlocks {
ph := block.ParentHash()
if bytes.Equal(ph[:], parentHash[:]) {
return block
}
}
return nil
}
func (ss *StateSync) getCommonBlockIter(parentHash common.Hash) *commonBlockIter {
return newCommonBlockIter(ss.commonBlocks, parentHash)
}
type commonBlockIter struct {
parentToChild map[common.Hash]*types.Block
curParentHash common.Hash
}
func newCommonBlockIter(blocks map[int]*types.Block, startHash common.Hash) *commonBlockIter {
m := make(map[common.Hash]*types.Block)
for _, block := range blocks {
m[block.ParentHash()] = block
}
return &commonBlockIter{
parentToChild: m,
curParentHash: startHash,
}
}
func (iter *commonBlockIter) Next() *types.Block {
curBlock, ok := iter.parentToChild[iter.curParentHash]
if !ok || curBlock == nil {
return nil
}
iter.curParentHash = curBlock.Hash()
return curBlock
}
func (iter *commonBlockIter) HasNext() bool {
_, ok := iter.parentToChild[iter.curParentHash]
return ok
}
func (ss *StateSync) getBlockFromLastMileBlocksByParentHash(parentHash common.Hash) *types.Block {
for _, block := range ss.lastMileBlocks {
ph := block.ParentHash()
if bytes.Equal(ph[:], parentHash[:]) {
return block
}
}
return nil
}
// UpdateBlockAndStatus ...
func (ss *StateSync) UpdateBlockAndStatus(block *types.Block, bc core.BlockChain, verifyAllSig bool) error {
if block.NumberU64() != bc.CurrentBlock().NumberU64()+1 {
utils.Logger().Debug().Uint64("curBlockNum", bc.CurrentBlock().NumberU64()).Uint64("receivedBlockNum", block.NumberU64()).Msg("[SYNC] Inappropriate block number, ignore!")
return nil
}
haveCurrentSig := len(block.GetCurrentCommitSig()) != 0
// Verify block signatures
if block.NumberU64() > 1 {
// Verify signature every N blocks (which N is verifyHeaderBatchSize and can be adjusted in configs)
verifySeal := block.NumberU64()%verifyHeaderBatchSize == 0 || verifyAllSig
verifyCurrentSig := verifyAllSig && haveCurrentSig
if verifyCurrentSig {
sig, bitmap, err := chain.ParseCommitSigAndBitmap(block.GetCurrentCommitSig())
if err != nil {
return errors.Wrap(err, "parse commitSigAndBitmap")
}
startTime := time.Now()
if err := bc.Engine().VerifyHeaderSignature(bc, block.Header(), sig, bitmap); err != nil {
return errors.Wrapf(err, "verify header signature %v", block.Hash().String())
}
utils.Logger().Debug().Int64("elapsed time", time.Now().Sub(startTime).Milliseconds()).Msg("[Sync] VerifyHeaderSignature")
}
err := bc.Engine().VerifyHeader(bc, block.Header(), verifySeal)
if err == engine.ErrUnknownAncestor {
return err
} else if err != nil {
utils.Logger().Error().Err(err).Msgf("[SYNC] UpdateBlockAndStatus: failed verifying signatures for new block %d", block.NumberU64())
if !verifyAllSig {
utils.Logger().Info().Interface("block", bc.CurrentBlock()).Msg("[SYNC] UpdateBlockAndStatus: Rolling back last 99 blocks!")
for i := uint64(0); i < verifyHeaderBatchSize-1; i++ {
if rbErr := bc.Rollback([]common.Hash{bc.CurrentBlock().Hash()}); rbErr != nil {
utils.Logger().Err(rbErr).Msg("[SYNC] UpdateBlockAndStatus: failed to rollback")
return err
}
}
}
return err
}
}
_, err := bc.InsertChain([]*types.Block{block}, false /* verifyHeaders */)
if err != nil {
utils.Logger().Error().
Err(err).
Msgf(
"[SYNC] UpdateBlockAndStatus: Error adding new block to blockchain %d %d",
block.NumberU64(),
block.ShardID(),
)
return err
}
utils.Logger().Info().
Uint64("blockHeight", block.NumberU64()).
Uint64("blockEpoch", block.Epoch().Uint64()).
Str("blockHex", block.Hash().Hex()).
Uint32("ShardID", block.ShardID()).
Msg("[SYNC] UpdateBlockAndStatus: New Block Added to Blockchain")
for i, tx := range block.StakingTransactions() {
utils.Logger().Info().
Msgf(
"StakingTxn %d: %s, %v", i, tx.StakingType().String(), tx.StakingMessage(),
)
}
return nil
}
// generateNewState will construct most recent state from downloaded blocks
func (ss *StateSync) generateNewState(bc core.BlockChain, worker *worker.Worker) error {
// update blocks created before node start sync
parentHash := bc.CurrentBlock().Hash()
var err error
commonIter := ss.getCommonBlockIter(parentHash)
for {
block := commonIter.Next()
if block == nil {
break
}
// Enforce sig check for the last block in a batch
enforceSigCheck := !commonIter.HasNext()
err = ss.UpdateBlockAndStatus(block, bc, enforceSigCheck)
if err != nil {
break
}
}
ss.syncMux.Lock()
ss.commonBlocks = make(map[int]*types.Block)
ss.syncMux.Unlock()
// update blocks after node start sync
parentHash = bc.CurrentBlock().Hash()
for {
block := ss.getMaxConsensusBlockFromParentHash(parentHash)
if block == nil {
break
}
err = ss.UpdateBlockAndStatus(block, bc, true)
if err != nil {
break
}
parentHash = block.Hash()
}
// TODO ek – Do we need to hold syncMux now that syncConfig has its own mutex?
ss.syncMux.Lock()
ss.syncConfig.ForEachPeer(func(peer *SyncPeerConfig) (brk bool) {
peer.newBlocks = []*types.Block{}
return
})
ss.syncMux.Unlock()
// update last mile blocks if any
parentHash = bc.CurrentBlock().Hash()
for {
block := ss.getBlockFromLastMileBlocksByParentHash(parentHash)
if block == nil {
break
}
err = ss.UpdateBlockAndStatus(block, bc, false)
if err != nil {
break
}
parentHash = block.Hash()
}
return err
}
// ProcessStateSync processes state sync from the blocks received but not yet processed so far
func (ss *StateSync) ProcessStateSync(startHash []byte, size uint32, bc core.BlockChain, worker *worker.Worker) error {
// Gets consensus hashes.
if err := ss.getConsensusHashes(startHash, size); err != nil {
return errors.Wrap(err, "getConsensusHashes")
}
ss.generateStateSyncTaskQueue(bc)
// Download blocks.
if ss.stateSyncTaskQueue.Len() > 0 {
ss.downloadBlocks(bc)
}
return ss.generateNewState(bc, worker)
}
func (peerConfig *SyncPeerConfig) registerToBroadcast(peerHash []byte, ip, port string) error {
response := peerConfig.client.Register(peerHash, ip, port)
if response == nil || response.Type == pb.DownloaderResponse_FAIL {
return ErrRegistrationFail
} else if response.Type == pb.DownloaderResponse_SUCCESS {
return nil
}
return ErrRegistrationFail
}
func (peerConfig *SyncPeerConfig) String() interface{} {
return fmt.Sprintf("peer: %s:%s ", peerConfig.peer.IP, peerConfig.peer.Port)
}
// RegisterNodeInfo will register node to peers to accept future new block broadcasting
// return number of successful registration
func (ss *StateSync) RegisterNodeInfo() int {
registrationNumber := RegistrationNumber
utils.Logger().Debug().
Int("registrationNumber", registrationNumber).
Int("activePeerNumber", len(ss.syncConfig.peers)).
Msg("[SYNC] node registration to peers")
count := 0
ss.syncConfig.ForEachPeer(func(peerConfig *SyncPeerConfig) (brk bool) {
logger := utils.Logger().With().Str("peerPort", peerConfig.peer.Port).Str("peerIP", peerConfig.peer.IP).Logger()
if count >= registrationNumber {
brk = true
return
}
if peerConfig.peer.IP == ss.selfip && peerConfig.peer.Port == GetSyncingPort(ss.selfport) {
logger.Debug().
Str("selfport", ss.selfport).
Str("selfsyncport", GetSyncingPort(ss.selfport)).
Msg("[SYNC] skip self")
return
}
err := peerConfig.registerToBroadcast(ss.selfPeerHash[:], ss.selfip, ss.selfport)
if err != nil {
logger.Debug().
Hex("selfPeerHash", ss.selfPeerHash[:]).
Msg("[SYNC] register failed to peer")
return
}
logger.Debug().Msg("[SYNC] register success")
count++
return
})
return count
}
// IsSameBlockchainHeight checks whether the node is out of sync from other peers
func (ss *StateSync) IsSameBlockchainHeight(bc core.BlockChain) (uint64, bool) {
otherHeight := getMaxPeerHeight(ss.syncConfig)
currentHeight := bc.CurrentBlock().NumberU64()
return otherHeight, currentHeight == otherHeight
}
// GetMaxPeerHeight ..
func (ss *StateSync) GetMaxPeerHeight() uint64 {
return getMaxPeerHeight(ss.syncConfig)
}
// SyncLoop will keep syncing with peers until catches up
func (ss *StateSync) SyncLoop(bc core.BlockChain, worker *worker.Worker, isBeacon bool, consensus *consensus.Consensus, loopMinTime time.Duration) {
utils.Logger().Info().Msgf("legacy sync is executing ...")
if !isBeacon {
ss.RegisterNodeInfo()
}
for {
start := time.Now()
otherHeight := getMaxPeerHeight(ss.syncConfig)
currentHeight := bc.CurrentBlock().NumberU64()
if currentHeight >= otherHeight {
utils.Logger().Info().
Msgf("[SYNC] Node is now IN SYNC! (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
break
}
utils.Logger().Info().
Msgf("[SYNC] Node is OUT OF SYNC (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
startHash := bc.CurrentBlock().Hash()
size := uint32(otherHeight - currentHeight)
if size > SyncLoopBatchSize {
size = SyncLoopBatchSize
}
err := ss.ProcessStateSync(startHash[:], size, bc, worker)
if err != nil {
utils.Logger().Error().Err(err).
Msgf("[SYNC] ProcessStateSync failed (isBeacon: %t, ShardID: %d, otherHeight: %d, currentHeight: %d)",
isBeacon, bc.ShardID(), otherHeight, currentHeight)
ss.purgeOldBlocksFromCache()
break
}
ss.purgeOldBlocksFromCache()
if loopMinTime != 0 {
waitTime := loopMinTime - time.Since(start)
c := time.After(waitTime)
select {
case <-c:
}
}
}
if consensus != nil {
if err := ss.addConsensusLastMile(bc, consensus); err != nil {
utils.Logger().Error().Err(err).Msg("[SYNC] Add consensus last mile")
}
// TODO: move this to explorer handler code.
if ss.isExplorer {
consensus.UpdateConsensusInformation()
}
}
utils.Logger().Info().Msgf("legacy sync is executed")
ss.purgeAllBlocksFromCache()
}
func (ss *StateSync) addConsensusLastMile(bc core.BlockChain, consensus *consensus.Consensus) error {
curNumber := bc.CurrentBlock().NumberU64()
blockIter, err := consensus.GetLastMileBlockIter(curNumber + 1)
if err != nil {
return err
}
for {
block := blockIter.Next()
if block == nil {
break
}
if _, err := bc.InsertChain(types.Blocks{block}, true); err != nil {
return errors.Wrap(err, "failed to InsertChain")
}
}
return nil
}
// GetSyncingPort returns the syncing port.
func GetSyncingPort(nodePort string) string {
if port, err := strconv.Atoi(nodePort); err == nil {
return fmt.Sprintf("%d", port-SyncingPortDifference)
}
return ""
}
const (
// syncStatusExpiration is the expiration time out of a sync status.
// If last sync result in memory is before the expiration, the sync status
// will be updated.
syncStatusExpiration = 6 * time.Second
// syncStatusExpirationNonValidator is the expiration of sync cache for non-validators.
// Compared with non-validator, the sync check is not as strict as validator nodes.
// TODO: add this field to harmony config
syncStatusExpirationNonValidator = 12 * time.Second
)
type (
syncStatus struct {
lastResult SyncCheckResult
lastUpdateTime time.Time
lock sync.RWMutex
expiration time.Duration
}
SyncCheckResult struct {
IsSynchronized bool
OtherHeight uint64
HeightDiff uint64
}
)
func ParseResult(res SyncCheckResult) (IsSynchronized bool, OtherHeight uint64, HeightDiff uint64) {
IsSynchronized = res.IsSynchronized
OtherHeight = res.OtherHeight
HeightDiff = res.HeightDiff
return IsSynchronized, OtherHeight, HeightDiff
}
func newSyncStatus(role nodeconfig.Role) syncStatus {
expiration := getSyncStatusExpiration(role)
return syncStatus{
expiration: expiration,
}
}
func getSyncStatusExpiration(role nodeconfig.Role) time.Duration {
switch role {
case nodeconfig.Validator:
return syncStatusExpiration
case nodeconfig.ExplorerNode:
return syncStatusExpirationNonValidator
default:
return syncStatusExpirationNonValidator
}
}
func (status *syncStatus) Get(fallback func() SyncCheckResult) SyncCheckResult {
status.lock.RLock()
if !status.expired() {
result := status.lastResult
status.lock.RUnlock()
return result
}
status.lock.RUnlock()
status.lock.Lock()
defer status.lock.Unlock()
if status.expired() {
result := fallback()
status.update(result)
}
return status.lastResult
}
func (status *syncStatus) Clone() syncStatus {
return syncStatus{
lastResult: status.lastResult,
lastUpdateTime: status.lastUpdateTime,
lock: sync.RWMutex{},
expiration: status.expiration,
}
}
func (ss *StateSync) IsSynchronized() bool {
result := ss.GetSyncStatus()
return result.IsSynchronized
}
func (status *syncStatus) expired() bool {
return time.Since(status.lastUpdateTime) > status.expiration
}
func (status *syncStatus) update(result SyncCheckResult) {
status.lastUpdateTime = time.Now()
status.lastResult = result
}
// GetSyncStatus get the last sync status for other modules (E.g. RPC, explorer).
// If the last sync result is not expired, return the sync result immediately.
// If the last result is expired, ask the remote DNS nodes for latest height and return the result.
func (ss *StateSync) GetSyncStatus() SyncCheckResult {
return ss.syncStatus.Get(func() SyncCheckResult {
return ss.isSynchronized(false)
})
}
func (ss *StateSync) GetParsedSyncStatus() (IsSynchronized bool, OtherHeight uint64, HeightDiff uint64) {
res := ss.syncStatus.Get(func() SyncCheckResult {
return ss.isSynchronized(false)
})
return ParseResult(res)
}
// GetSyncStatusDoubleChecked return the sync status when enforcing a immediate query on DNS nodes
// with a double check to avoid false alarm.
func (ss *StateSync) GetSyncStatusDoubleChecked() SyncCheckResult {
result := ss.isSynchronized(true)
return result
}
func (ss *StateSync) GetParsedSyncStatusDoubleChecked() (IsSynchronized bool, OtherHeight uint64, HeightDiff uint64) {
result := ss.isSynchronized(true)
return ParseResult(result)
}
// isSynchronized query the remote DNS node for the latest height to check what is the current
// sync status
func (ss *StateSync) isSynchronized(doubleCheck bool) SyncCheckResult {
if ss.syncConfig == nil {
return SyncCheckResult{} // If syncConfig is not instantiated, return not in sync
}
otherHeight1 := getMaxPeerHeight(ss.syncConfig)
lastHeight := ss.blockChain.CurrentBlock().NumberU64()
wasOutOfSync := lastHeight+inSyncThreshold < otherHeight1
if !doubleCheck {
heightDiff := otherHeight1 - lastHeight
if otherHeight1 < lastHeight {
heightDiff = 0 //
}
utils.Logger().Info().
Uint64("OtherHeight", otherHeight1).
Uint64("lastHeight", lastHeight).
Msg("[SYNC] Checking sync status")
return SyncCheckResult{
IsSynchronized: !wasOutOfSync,
OtherHeight: otherHeight1,
HeightDiff: heightDiff,
}
}
// double check the sync status after 1 second to confirm (avoid false alarm)
time.Sleep(1 * time.Second)
otherHeight2 := getMaxPeerHeight(ss.syncConfig)
currentHeight := ss.blockChain.CurrentBlock().NumberU64()
isOutOfSync := currentHeight+inSyncThreshold < otherHeight2
utils.Logger().Info().
Uint64("OtherHeight1", otherHeight1).
Uint64("OtherHeight2", otherHeight2).
Uint64("lastHeight", lastHeight).
Uint64("currentHeight", currentHeight).
Msg("[SYNC] Checking sync status")
// Only confirm out of sync when the node has lower height and didn't move in heights for 2 consecutive checks
heightDiff := otherHeight2 - lastHeight
if otherHeight2 < lastHeight {
heightDiff = 0 // overflow
}
return SyncCheckResult{
IsSynchronized: !(wasOutOfSync && isOutOfSync && lastHeight == currentHeight),
OtherHeight: otherHeight2,
HeightDiff: heightDiff,
}
}