The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/core/block_validator.go

269 lines
11 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/harmony-one/bls/ffi/go/bls"
bls2 "github.com/harmony-one/harmony/crypto/bls"
"github.com/harmony-one/harmony/internal/ctxerror"
"github.com/harmony-one/harmony/block"
consensus_engine "github.com/harmony-one/harmony/consensus/engine"
"github.com/harmony-one/harmony/core/state"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/params"
)
// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
config *params.ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
engine consensus_engine.Engine // Consensus engine used for validating
}
// NewBlockValidator returns a new block validator which is safe for re-use
func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus_engine.Engine) *BlockValidator {
validator := &BlockValidator{
config: config,
engine: engine,
bc: blockchain,
}
return validator
}
// ValidateBody validates the given block's uncles and verifies the block
// header's transaction and uncle roots. The headers are assumed to be already
// validated at this point.
func (v *BlockValidator) ValidateBody(block *types.Block) error {
// Check whether the block's known, and if not, that it's linkable
if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) {
return ErrKnownBlock
}
if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) {
if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) {
return consensus_engine.ErrUnknownAncestor
}
return consensus_engine.ErrPrunedAncestor
}
// Header validity is known at this point, check the uncles and transactions
header := block.Header()
//if err := v.engine.VerifyUncles(v.bc, block); err != nil {
// return err
//}
if hash := types.DeriveSha(block.Transactions()); hash != header.TxHash() {
return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash())
}
return nil
}
// ValidateState validates the various changes that happen after a state
// transition, such as amount of used gas, the receipt roots and the state root
// itself. ValidateState returns a database batch if the validation was a success
// otherwise nil and an error is returned.
func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.DB, receipts types.Receipts, cxReceipts types.CXReceipts, usedGas uint64) error {
header := block.Header()
if block.GasUsed() != usedGas {
return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas)
}
// Validate the received block's bloom with the one derived from the generated receipts.
// For valid blocks this should always validate to true.
rbloom := types.CreateBloom(receipts)
if rbloom != header.Bloom() {
return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom(), rbloom)
}
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]]))
receiptSha := types.DeriveSha(receipts)
if receiptSha != header.ReceiptHash() {
return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash(), receiptSha)
}
cxsSha := types.DeriveMultipleShardsSha(cxReceipts)
if cxsSha != header.OutgoingReceiptHash() {
return fmt.Errorf("invalid cross shard receipt root hash (remote: %x local: %x)", header.OutgoingReceiptHash(), cxsSha)
}
// Validate the state root against the received state root and throw
// an error if they don't match.
if root := statedb.IntermediateRoot(v.config.IsS3(header.Epoch())); header.Root() != root {
return fmt.Errorf("invalid merkle root (remote: %x local: %x)", header.Root(), root)
}
return nil
}
// VerifyHeaderWithSignature verifies the header with corresponding commit sigs
func VerifyHeaderWithSignature(header *block.Header, commitSig []byte, commitBitmap []byte) error {
if header == nil || len(commitSig) != 96 || len(commitBitmap) == 0 {
return ctxerror.New("[VerifyHeaderWithSignature] Invalid header/commitSig/commitBitmap", "header", header, "commitSigLen", len(commitSig), "commitBitmapLen", len(commitBitmap))
}
shardState := GetShardState(header.Epoch())
committee := shardState.FindCommitteeByID(header.ShardID())
var err error
if committee == nil {
return ctxerror.New("[VerifyHeaderWithSignature] Failed to read shard state", "shardID", header.ShardID(), "blockNum", header.Number())
}
var committerKeys []*bls.PublicKey
parseKeysSuccess := true
for _, member := range committee.NodeList {
committerKey := new(bls.PublicKey)
err = member.BlsPublicKey.ToLibBLSPublicKey(committerKey)
if err != nil {
parseKeysSuccess = false
break
}
committerKeys = append(committerKeys, committerKey)
}
if !parseKeysSuccess {
return ctxerror.New("[VerifyBlockWithSignature] cannot convert BLS public key", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err)
}
mask, err := bls2.NewMask(committerKeys, nil)
if err != nil {
return ctxerror.New("[VerifyHeaderWithSignature] cannot create group sig mask", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err)
}
if err := mask.SetMask(commitBitmap); err != nil {
return ctxerror.New("[VerifyHeaderWithSignature] cannot set group sig mask bits", "shardID", header.ShardID(), "blockNum", header.Number()).WithCause(err)
}
aggSig := bls.Sign{}
err = aggSig.Deserialize(commitSig[:])
if err != nil {
return ctxerror.New("[VerifyNewBlock] unable to deserialize multi-signature from payload").WithCause(err)
}
blockNumBytes := make([]byte, 8)
binary.LittleEndian.PutUint64(blockNumBytes, header.Number().Uint64())
hash := header.Hash()
commitPayload := append(blockNumBytes, hash[:]...)
if !aggSig.VerifyHash(mask.AggregatePublic, commitPayload) {
return ctxerror.New("[VerifyHeaderWithSignature] Failed to verify the signature for last commit sig", "shardID", header.ShardID(), "blockNum", header.Number())
}
return nil
}
// VerifyBlockLastCommitSigs verifies the last commit sigs of the block
func VerifyBlockLastCommitSigs(bc *BlockChain, header *block.Header) error {
parentHeader := bc.GetHeaderByNumber(header.Number().Uint64() - 1)
if parentHeader == nil {
return ctxerror.New("[VerifyBlockLastCommitSigs] Failed to get parent block", "shardID", header.ShardID(), "blockNum", header.Number())
}
lastCommitSig := header.LastCommitSignature()
lastCommitBitmap := header.LastCommitBitmap()
return VerifyHeaderWithSignature(parentHeader, lastCommitSig[:], lastCommitBitmap)
}
// CalcGasLimit computes the gas limit of the next block after parent. It aims
// to keep the baseline gas above the provided floor, and increase it towards the
// ceil if the blocks are full. If the ceil is exceeded, it will always decrease
// the gas allowance.
func CalcGasLimit(parent *types.Block, gasFloor, gasCeil uint64) uint64 {
// contrib = (parentGasUsed * 3 / 2) / 1024
contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor
// decay = parentGasLimit / 1024 -1
decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1
/*
strategy: gasLimit of block-to-mine is set based on parent's
gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we
increase it, otherwise lower it (or leave it unchanged if it's right
at that usage) the amount increased/decreased depends on how far away
from parentGasLimit * (2/3) parentGasUsed is.
*/
limit := parent.GasLimit() - decay + contrib
if limit < params.MinGasLimit {
limit = params.MinGasLimit
}
// If we're outside our allowed gas range, we try to hone towards them
if limit < gasFloor {
limit = parent.GasLimit() + decay
if limit > gasFloor {
limit = gasFloor
}
} else if limit > gasCeil {
limit = parent.GasLimit() - decay
if limit < gasCeil {
limit = gasCeil
}
}
return limit
}
// IsValidCXReceiptsProof checks whether the given CXReceiptsProof is consistency with itself
func IsValidCXReceiptsProof(cxp *types.CXReceiptsProof) error {
toShardID, err := cxp.GetToShardID()
if err != nil {
return ctxerror.New("[IsValidCXReceiptsProof] invalid shardID").WithCause(err)
}
merkleProof := cxp.MerkleProof
shardRoot := common.Hash{}
foundMatchingShardID := false
byteBuffer := bytes.NewBuffer([]byte{})
// prepare to calculate source shard outgoing cxreceipts root hash
for j := 0; j < len(merkleProof.ShardIDs); j++ {
sKey := make([]byte, 4)
binary.BigEndian.PutUint32(sKey, merkleProof.ShardIDs[j])
byteBuffer.Write(sKey)
byteBuffer.Write(merkleProof.CXShardHashes[j][:])
if merkleProof.ShardIDs[j] == toShardID {
shardRoot = merkleProof.CXShardHashes[j]
foundMatchingShardID = true
}
}
if !foundMatchingShardID {
return ctxerror.New("[IsValidCXReceiptsProof] Didn't find matching shardID")
}
sourceShardID := merkleProof.ShardID
sourceBlockNum := merkleProof.BlockNum
sha := types.DeriveSha(cxp.Receipts)
// (1) verify the CXReceipts trie root match
if sha != shardRoot {
return ctxerror.New("[IsValidCXReceiptsProof] Trie Root of ReadCXReceipts Not Match", "sourceShardID", sourceShardID, "sourceBlockNum", sourceBlockNum, "calculated", sha, "got", shardRoot)
}
// (2) verify the outgoingCXReceiptsHash match
outgoingHashFromSourceShard := crypto.Keccak256Hash(byteBuffer.Bytes())
if outgoingHashFromSourceShard != merkleProof.CXReceiptHash {
return ctxerror.New("[IsValidCXReceiptsProof] IncomingReceiptRootHash from source shard not match", "sourceShardID", sourceShardID, "sourceBlockNum", sourceBlockNum, "calculated", outgoingHashFromSourceShard, "got", merkleProof.CXReceiptHash)
}
// (3) verify the block hash matches
if cxp.Header.Hash() != merkleProof.BlockHash || cxp.Header.OutgoingReceiptHash() != merkleProof.CXReceiptHash {
return ctxerror.New("[IsValidCXReceiptsProof] BlockHash or OutgoingReceiptHash not match in block Header", "blockHash", cxp.Header.Hash(), "merkleProofBlockHash", merkleProof.BlockHash, "headerOutReceiptHash", cxp.Header.OutgoingReceiptHash(), "merkleOutReceiptHash", merkleProof.CXReceiptHash)
}
// (4) verify signatures of blockHeader
return VerifyHeaderWithSignature(cxp.Header, cxp.CommitSig, cxp.CommitBitmap)
}