The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node.go

1060 lines
34 KiB

package node
import (
"context"
"crypto/ecdsa"
"fmt"
"math/big"
"os"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/harmony-one/harmony/crypto/bls"
"github.com/ethereum/go-ethereum/common"
protobuf "github.com/golang/protobuf/proto"
"github.com/harmony-one/abool"
bls_core "github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/proto"
msg_pb "github.com/harmony-one/harmony/api/proto/message"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/api/service"
"github.com/harmony-one/harmony/api/service/syncing"
"github.com/harmony-one/harmony/api/service/syncing/downloader"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/rawdb"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/internal/chain"
common2 "github.com/harmony-one/harmony/internal/common"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/params"
"github.com/harmony-one/harmony/internal/shardchain"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/p2p"
"github.com/harmony-one/harmony/shard"
"github.com/harmony-one/harmony/shard/committee"
"github.com/harmony-one/harmony/staking/slash"
staking "github.com/harmony-one/harmony/staking/types"
"github.com/harmony-one/harmony/webhooks"
libp2p_peer "github.com/libp2p/go-libp2p-core/peer"
libp2p_pubsub "github.com/libp2p/go-libp2p-pubsub"
"github.com/pkg/errors"
"golang.org/x/sync/semaphore"
)
const (
// NumTryBroadCast is the number of times trying to broadcast
NumTryBroadCast = 3
// ClientRxQueueSize is the number of client messages to queue before tail-dropping.
ClientRxQueueSize = 16384
// ShardRxQueueSize is the number of shard messages to queue before tail-dropping.
ShardRxQueueSize = 16384
// GlobalRxQueueSize is the number of global messages to queue before tail-dropping.
GlobalRxQueueSize = 16384
// ClientRxWorkers is the number of concurrent client message handlers.
ClientRxWorkers = 8
// ShardRxWorkers is the number of concurrent shard message handlers.
ShardRxWorkers = 32
// GlobalRxWorkers is the number of concurrent global message handlers.
GlobalRxWorkers = 32
// MsgChanBuffer is the buffer of consensus message handlers.
MsgChanBuffer = 1024
)
const (
maxBroadcastNodes = 10 // broadcast at most maxBroadcastNodes peers that need in sync
broadcastTimeout int64 = 60 * 1000000000 // 1 mins
//SyncIDLength is the length of bytes for syncID
SyncIDLength = 20
)
// use to push new block to outofsync node
type syncConfig struct {
timestamp int64
client *downloader.Client
}
// Node represents a protocol-participating node in the network
type Node struct {
Consensus *consensus.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits)
BlockChannel chan *types.Block // The channel to send newly proposed blocks
ConfirmedBlockChannel chan *types.Block // The channel to send confirmed blocks
BeaconBlockChannel chan *types.Block // The channel to send beacon blocks for non-beaconchain nodes
pendingCXReceipts map[string]*types.CXReceiptsProof // All the receipts received but not yet processed for Consensus
pendingCXMutex sync.Mutex
// Shard databases
shardChains shardchain.Collection
SelfPeer p2p.Peer
// TODO: Neighbors should store only neighbor nodes in the same shard
Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
stateMutex sync.Mutex // mutex for change node state
// BeaconNeighbors store only neighbor nodes in the beacon chain shard
BeaconNeighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
TxPool *core.TxPool
CxPool *core.CxPool // pool for missing cross shard receipts resend
Worker, BeaconWorker *worker.Worker
downloaderServer *downloader.Server
// Syncing component.
syncID [SyncIDLength]byte // a unique ID for the node during the state syncing process with peers
stateSync, beaconSync *syncing.StateSync
peerRegistrationRecord map[string]*syncConfig // record registration time (unixtime) of peers begin in syncing
SyncingPeerProvider SyncingPeerProvider
// The p2p host used to send/receive p2p messages
host p2p.Host
// Service manager.
serviceManager *service.Manager
ContractDeployerKey *ecdsa.PrivateKey
ContractDeployerCurrentNonce uint64 // The nonce of the deployer contract at current block
ContractAddresses []common.Address
// Channel to notify consensus service to really start consensus
startConsensus chan struct{}
// node configuration, including group ID, shard ID, etc
NodeConfig *nodeconfig.ConfigType
// Chain configuration.
chainConfig params.ChainConfig
// map of service type to its message channel.
serviceMessageChan map[service.Type]chan *msg_pb.Message
isFirstTime bool // the node was started with a fresh database
unixTimeAtNodeStart int64
// KeysToAddrs holds the addresses of bls keys run by the node
KeysToAddrs map[string]common.Address
keysToAddrsEpoch *big.Int
keysToAddrsMutex sync.Mutex
// TransactionErrorSink contains error messages for any failed transaction, in memory only
TransactionErrorSink *types.TransactionErrorSink
// BroadcastInvalidTx flag is considered when adding pending tx to tx-pool
BroadcastInvalidTx bool
// InSync flag indicates the node is in-sync or not
IsInSync *abool.AtomicBool
// metrics of p2p messages
NumP2PMessages uint32
NumTotalMessages uint32
NumValidMessages uint32
NumInvalidMessages uint32
NumSlotMessages uint32
NumIgnoredMessages uint32
}
// Blockchain returns the blockchain for the node's current shard.
func (node *Node) Blockchain() *core.BlockChain {
shardID := node.NodeConfig.ShardID
bc, err := node.shardChains.ShardChain(shardID)
if err != nil {
utils.Logger().Error().
Uint32("shardID", shardID).
Err(err).
Msg("cannot get shard chain")
}
return bc
}
// Beaconchain returns the beaconchain from node.
func (node *Node) Beaconchain() *core.BlockChain {
bc, err := node.shardChains.ShardChain(shard.BeaconChainShardID)
if err != nil {
utils.Logger().Error().Err(err).Msg("cannot get beaconchain")
}
return bc
}
// TODO: make this batch more transactions
func (node *Node) tryBroadcast(tx *types.Transaction) {
msg := proto_node.ConstructTransactionListMessageAccount(types.Transactions{tx})
shardGroupID := nodeconfig.NewGroupIDByShardID(nodeconfig.ShardID(tx.ShardID()))
utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcast")
for attempt := 0; attempt < NumTryBroadCast; attempt++ {
if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID},
p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast {
utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast tx")
} else {
break
}
}
}
func (node *Node) tryBroadcastStaking(stakingTx *staking.StakingTransaction) {
msg := proto_node.ConstructStakingTransactionListMessageAccount(staking.StakingTransactions{stakingTx})
shardGroupID := nodeconfig.NewGroupIDByShardID(
nodeconfig.ShardID(shard.BeaconChainShardID),
) // broadcast to beacon chain
utils.Logger().Info().Str("shardGroupID", string(shardGroupID)).Msg("tryBroadcastStaking")
for attempt := 0; attempt < NumTryBroadCast; attempt++ {
if err := node.host.SendMessageToGroups([]nodeconfig.GroupID{shardGroupID},
p2p.ConstructMessage(msg)); err != nil && attempt < NumTryBroadCast {
utils.Logger().Error().Int("attempt", attempt).Msg("Error when trying to broadcast staking tx")
} else {
break
}
}
}
// Add new transactions to the pending transaction list.
func (node *Node) addPendingTransactions(newTxs types.Transactions) []error {
poolTxs := types.PoolTransactions{}
for _, tx := range newTxs {
poolTxs = append(poolTxs, tx)
}
errs := node.TxPool.AddRemotes(poolTxs)
pendingCount, queueCount := node.TxPool.Stats()
utils.Logger().Info().
Interface("err", errs).
Int("length of newTxs", len(newTxs)).
Int("totalPending", pendingCount).
Int("totalQueued", queueCount).
Msg("[addPendingTransactions] Adding more transactions")
return errs
}
// Add new staking transactions to the pending staking transaction list.
func (node *Node) addPendingStakingTransactions(newStakingTxs staking.StakingTransactions) []error {
if node.NodeConfig.ShardID == shard.BeaconChainShardID &&
node.Blockchain().Config().IsPreStaking(node.Blockchain().CurrentHeader().Epoch()) {
poolTxs := types.PoolTransactions{}
for _, tx := range newStakingTxs {
poolTxs = append(poolTxs, tx)
}
errs := node.TxPool.AddRemotes(poolTxs)
pendingCount, queueCount := node.TxPool.Stats()
utils.Logger().Info().
Int("length of newStakingTxs", len(poolTxs)).
Int("totalPending", pendingCount).
Int("totalQueued", queueCount).
Msg("Got more staking transactions")
return errs
}
return make([]error, len(newStakingTxs))
}
// AddPendingStakingTransaction staking transactions
func (node *Node) AddPendingStakingTransaction(
newStakingTx *staking.StakingTransaction,
) error {
if node.NodeConfig.ShardID == shard.BeaconChainShardID {
errs := node.addPendingStakingTransactions(staking.StakingTransactions{newStakingTx})
var err error
for i := range errs {
if errs[i] != nil {
utils.Logger().Info().Err(errs[i]).Msg("[AddPendingStakingTransaction] Failed adding new staking transaction")
err = errs[i]
break
}
}
if err == nil || node.BroadcastInvalidTx {
utils.Logger().Info().Str("Hash", newStakingTx.Hash().Hex()).Msg("Broadcasting Staking Tx")
node.tryBroadcastStaking(newStakingTx)
}
return err
}
return nil
}
// AddPendingTransaction adds one new transaction to the pending transaction list.
// This is only called from SDK.
func (node *Node) AddPendingTransaction(newTx *types.Transaction) error {
if newTx.ShardID() == node.NodeConfig.ShardID {
errs := node.addPendingTransactions(types.Transactions{newTx})
var err error
for i := range errs {
if errs[i] != nil {
utils.Logger().Info().Err(errs[i]).Msg("[AddPendingTransaction] Failed adding new transaction")
err = errs[i]
break
}
}
if err == nil || node.BroadcastInvalidTx {
utils.Logger().Info().Str("Hash", newTx.Hash().Hex()).Msg("Broadcasting Tx")
node.tryBroadcast(newTx)
}
return err
}
return errors.New("shard do not match")
}
// AddPendingReceipts adds one receipt message to pending list.
func (node *Node) AddPendingReceipts(receipts *types.CXReceiptsProof) {
node.pendingCXMutex.Lock()
defer node.pendingCXMutex.Unlock()
if receipts.ContainsEmptyField() {
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("CXReceiptsProof contains empty field")
return
}
blockNum := receipts.Header.Number().Uint64()
shardID := receipts.Header.ShardID()
// Sanity checks
if err := node.Blockchain().Validator().ValidateCXReceiptsProof(receipts); err != nil {
if !strings.Contains(err.Error(), rawdb.MsgNoShardStateFromDB) {
utils.Logger().Error().Err(err).Msg("[AddPendingReceipts] Invalid CXReceiptsProof")
return
}
}
// cross-shard receipt should not be coming from our shard
if s := node.Consensus.ShardID; s == shardID {
utils.Logger().Info().
Uint32("my-shard", s).
Uint32("receipt-shard", shardID).
Msg("ShardID of incoming receipt was same as mine")
return
}
if e := receipts.Header.Epoch(); blockNum == 0 ||
!node.Blockchain().Config().AcceptsCrossTx(e) {
utils.Logger().Info().
Uint64("incoming-epoch", e.Uint64()).
Msg("Incoming receipt had meaningless epoch")
return
}
key := utils.GetPendingCXKey(shardID, blockNum)
// DDoS protection
const maxCrossTxnSize = 4096
if s := len(node.pendingCXReceipts); s >= maxCrossTxnSize {
utils.Logger().Info().
Int("pending-cx-receipts-size", s).
Int("pending-cx-receipts-limit", maxCrossTxnSize).
Msg("Current pending cx-receipts reached size limit")
return
}
if _, ok := node.pendingCXReceipts[key]; ok {
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("Already Got Same Receipt message")
return
}
node.pendingCXReceipts[key] = receipts
utils.Logger().Info().
Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("Got ONE more receipt message")
}
type withError struct {
err error
payload interface{}
}
var (
errNotRightKeySize = errors.New("key received over wire is wrong size")
errNoSenderPubKey = errors.New("no sender public BLS key in message")
errWrongShardID = errors.New("wrong shard id")
)
// validateShardBoundMessage validate consensus message
// validate shardID
// validate public key size
// verify message signature
func (node *Node) validateShardBoundMessage(
ctx context.Context, payload []byte,
) (*msg_pb.Message, *bls.SerializedPublicKey, bool, error) {
var (
m msg_pb.Message
)
atomic.AddUint32(&node.NumTotalMessages, 1)
if err := protobuf.Unmarshal(payload, &m); err != nil {
atomic.AddUint32(&node.NumInvalidMessages, 1)
return nil, nil, true, errors.WithStack(err)
}
// when node is in ViewChanging mode, it still accepts normal messages into FBFTLog
// in order to avoid possible trap forever but drop PREPARE and COMMIT
// which are message types specifically for a node acting as leader
// so we just ignore those messages
if node.Consensus.IsViewChangingMode() {
switch m.Type {
case msg_pb.MessageType_PREPARE, msg_pb.MessageType_COMMIT:
return nil, nil, true, nil
}
}
// ignore message not intended for leader, but still forward them to the network
if node.Consensus.IsLeader() {
switch m.Type {
case msg_pb.MessageType_ANNOUNCE, msg_pb.MessageType_PREPARED, msg_pb.MessageType_COMMITTED:
atomic.AddUint32(&node.NumIgnoredMessages, 1)
return nil, nil, true, nil
}
}
maybeCon, maybeVC := m.GetConsensus(), m.GetViewchange()
senderKey := bls.SerializedPublicKey{}
if maybeCon != nil {
if maybeCon.ShardId != node.Consensus.ShardID {
atomic.AddUint32(&node.NumInvalidMessages, 1)
return nil, nil, true, errors.WithStack(errWrongShardID)
}
copy(senderKey[:], maybeCon.SenderPubkey[:])
} else if maybeVC != nil {
if maybeVC.ShardId != node.Consensus.ShardID {
atomic.AddUint32(&node.NumInvalidMessages, 1)
return nil, nil, true, errors.WithStack(errWrongShardID)
}
copy(senderKey[:], maybeVC.SenderPubkey)
} else {
atomic.AddUint32(&node.NumInvalidMessages, 1)
return nil, nil, true, errors.WithStack(errNoSenderPubKey)
}
if len(senderKey) != bls.PublicKeySizeInBytes {
atomic.AddUint32(&node.NumInvalidMessages, 1)
return nil, nil, true, errors.WithStack(errNotRightKeySize)
}
if !node.Consensus.IsValidatorInCommittee(senderKey) {
atomic.AddUint32(&node.NumSlotMessages, 1)
return nil, nil, true, errors.WithStack(shard.ErrValidNotInCommittee)
}
// ignore mesage not intended for validator
// but still forward them to the network
if !node.Consensus.IsLeader() {
switch m.Type {
case msg_pb.MessageType_PREPARE, msg_pb.MessageType_COMMIT:
atomic.AddUint32(&node.NumIgnoredMessages, 1)
return nil, nil, true, nil
}
}
atomic.AddUint32(&node.NumValidMessages, 1)
return &m, &senderKey, false, nil
}
var (
errMsgHadNoHMYPayLoadAssumption = errors.New("did not have sufficient size for hmy msg")
errConsensusMessageOnUnexpectedTopic = errors.New("received consensus on wrong topic")
)
// Start kicks off the node message handling
func (node *Node) Start() error {
// groupID and whether this topic is used for consensus
type t struct {
tp nodeconfig.GroupID
isCon bool
}
groups := map[nodeconfig.GroupID]bool{}
// three topic subscribed by each validator
for _, t := range []t{
{node.NodeConfig.GetShardGroupID(), true},
{nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID), false},
{node.NodeConfig.GetClientGroupID(), false},
} {
if _, ok := groups[t.tp]; !ok {
groups[t.tp] = t.isCon
}
}
type u struct {
p2p.NamedTopic
consensusBound bool
}
var allTopics []u
utils.Logger().Debug().
Interface("topics-ended-up-with", groups).
Uint32("shard-id", node.Consensus.ShardID).
Msg("starting with these topics")
for key, isCon := range groups {
topicHandle, err := node.host.GetOrJoin(string(key))
if err != nil {
return err
}
allTopics = append(
allTopics, u{
NamedTopic: p2p.NamedTopic{string(key), topicHandle},
consensusBound: isCon,
},
)
}
pubsub := node.host.PubSub()
ownID := node.host.GetID()
errChan := make(chan withError, 100)
// p2p consensus message handler function
type p2pHandlerConsensus func(
ctx context.Context,
msg *msg_pb.Message,
key *bls.SerializedPublicKey,
) error
// other p2p message handler function
type p2pHandlerElse func(
ctx context.Context,
rlpPayload []byte,
) error
// interface pass to p2p message validator
type validated struct {
consensusBound bool
handleC p2pHandlerConsensus
handleCArg *msg_pb.Message
handleE p2pHandlerElse
handleEArg []byte
senderPubKey *bls.SerializedPublicKey
}
isThisNodeAnExplorerNode := node.NodeConfig.Role() == nodeconfig.ExplorerNode
for i := range allTopics {
sub, err := allTopics[i].Topic.Subscribe()
if err != nil {
return err
}
topicNamed := allTopics[i].Name
isConsensusBound := allTopics[i].consensusBound
utils.Logger().Info().
Str("topic", topicNamed).
Msg("enabled topic validation pubsub messages")
// register topic validator for each topic
if err := pubsub.RegisterTopicValidator(
topicNamed,
// this is the validation function called to quickly validate every p2p message
func(ctx context.Context, peer libp2p_peer.ID, msg *libp2p_pubsub.Message) libp2p_pubsub.ValidationResult {
atomic.AddUint32(&node.NumP2PMessages, 1)
hmyMsg := msg.GetData()
// first to validate the size of the p2p message
if len(hmyMsg) < p2pMsgPrefixSize {
return libp2p_pubsub.ValidationAccept
}
openBox := hmyMsg[p2pMsgPrefixSize:]
// validate message category
switch proto.MessageCategory(openBox[proto.MessageCategoryBytes-1]) {
case proto.Consensus:
// received consensus message in non-consensus bound topic
if !isConsensusBound {
errChan <- withError{
errors.WithStack(errConsensusMessageOnUnexpectedTopic), msg,
}
return libp2p_pubsub.ValidationReject
}
// validate consensus message
validMsg, senderPubKey, ignore, err := node.validateShardBoundMessage(
context.TODO(), openBox[proto.MessageCategoryBytes:],
)
if err != nil {
errChan <- withError{err, msg.GetFrom()}
return libp2p_pubsub.ValidationReject
}
// ignore the further processing of the p2p messages as it is not intended for this node
if ignore {
return libp2p_pubsub.ValidationAccept
}
msg.ValidatorData = validated{
consensusBound: true,
handleC: node.Consensus.HandleMessageUpdate,
handleCArg: validMsg,
senderPubKey: senderPubKey,
}
return libp2p_pubsub.ValidationAccept
case proto.Node:
// TODO push the message parsing here, so can ban
msg.ValidatorData = validated{
consensusBound: false,
handleE: node.HandleNodeMessage,
handleEArg: openBox,
}
default:
return libp2p_pubsub.ValidationIgnore
}
select {
case <-ctx.Done():
if errors.Is(ctx.Err(), context.DeadlineExceeded) {
utils.Logger().Warn().
Str("topic", topicNamed).Msg("[context] exceeded validation deadline")
}
errChan <- withError{errors.WithStack(ctx.Err()), nil}
default:
return libp2p_pubsub.ValidationAccept
}
return libp2p_pubsub.ValidationReject
},
// WithValidatorTimeout is an option that sets a timeout for an (asynchronous) topic validator. By default there is no timeout in asynchronous validators.
libp2p_pubsub.WithValidatorTimeout(250*time.Millisecond),
// WithValidatorConcurrency set the concurernt validator, default is 1024
libp2p_pubsub.WithValidatorConcurrency(p2p.SetAsideForConsensus),
// WithValidatorInline is an option that sets the validation disposition to synchronous:
// it will be executed inline in validation front-end, without spawning a new goroutine.
// This is suitable for simple or cpu-bound validators that do not block.
libp2p_pubsub.WithValidatorInline(true),
); err != nil {
return err
}
sem := semaphore.NewWeighted(p2p.MaxMessageHandlers)
msgChan := make(chan validated, MsgChanBuffer)
go func() {
for m := range msgChan {
// should not take more than 10 seconds to process one message
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
msg := m
go func() {
defer cancel()
if sem.TryAcquire(1) {
defer sem.Release(1)
if msg.consensusBound {
if isThisNodeAnExplorerNode {
if err := node.explorerMessageHandler(
ctx, msg.handleCArg,
); err != nil {
errChan <- withError{err, nil}
}
} else {
if err := msg.handleC(ctx, msg.handleCArg, msg.senderPubKey); err != nil {
errChan <- withError{err, nil}
}
}
} else {
if err := msg.handleE(ctx, msg.handleEArg); err != nil {
errChan <- withError{err, nil}
}
}
select {
case <-ctx.Done():
if errors.Is(ctx.Err(), context.DeadlineExceeded) {
utils.Logger().Warn().
Str("topic", topicNamed).Msg("[context] exceeded handler deadline")
}
errChan <- withError{errors.WithStack(ctx.Err()), nil}
default:
return
}
}
}()
}
}()
go func() {
for {
nextMsg, err := sub.Next(context.Background())
if err != nil {
errChan <- withError{errors.WithStack(err), nil}
continue
}
if nextMsg.GetFrom() == ownID {
continue
}
if validatedMessage, ok := nextMsg.ValidatorData.(validated); ok {
msgChan <- validatedMessage
} else {
// continue if ValidatorData is nil
if nextMsg.ValidatorData == nil {
continue
}
}
}
}()
}
for e := range errChan {
utils.SampledLogger().Info().
Interface("item", e.payload).
Msgf("[p2p]: issue while handling incoming p2p message: %v", e.err)
}
// NOTE never gets here
return nil
}
// GetSyncID returns the syncID of this node
func (node *Node) GetSyncID() [SyncIDLength]byte {
return node.syncID
}
// New creates a new node.
func New(
host p2p.Host,
consensusObj *consensus.Consensus,
chainDBFactory shardchain.DBFactory,
blacklist map[common.Address]struct{},
isArchival bool,
) *Node {
node := Node{}
node.unixTimeAtNodeStart = time.Now().Unix()
node.TransactionErrorSink = types.NewTransactionErrorSink()
// Get the node config that's created in the harmony.go program.
if consensusObj != nil {
node.NodeConfig = nodeconfig.GetShardConfig(consensusObj.ShardID)
} else {
node.NodeConfig = nodeconfig.GetDefaultConfig()
}
copy(node.syncID[:], GenerateRandomString(SyncIDLength))
if host != nil {
node.host = host
node.SelfPeer = host.GetSelfPeer()
}
networkType := node.NodeConfig.GetNetworkType()
chainConfig := networkType.ChainConfig()
node.chainConfig = chainConfig
collection := shardchain.NewCollection(
chainDBFactory, &genesisInitializer{&node}, chain.Engine, &chainConfig,
)
if isArchival {
collection.DisableCache()
}
node.shardChains = collection
node.IsInSync = abool.NewBool(false)
if host != nil && consensusObj != nil {
// Consensus and associated channel to communicate blocks
node.Consensus = consensusObj
// Load the chains.
blockchain := node.Blockchain() // this also sets node.isFirstTime if the DB is fresh
beaconChain := node.Beaconchain()
if b1, b2 := beaconChain == nil, blockchain == nil; b1 || b2 {
shardID := node.NodeConfig.ShardID
// HACK get the real error reason
_, err := node.shardChains.ShardChain(shardID)
fmt.Fprintf(
os.Stderr,
"reason:%s beaconchain-is-nil:%t shardchain-is-nil:%t",
err.Error(), b1, b2,
)
os.Exit(-1)
}
node.BlockChannel = make(chan *types.Block)
node.ConfirmedBlockChannel = make(chan *types.Block)
node.BeaconBlockChannel = make(chan *types.Block)
txPoolConfig := core.DefaultTxPoolConfig
txPoolConfig.Blacklist = blacklist
node.TxPool = core.NewTxPool(txPoolConfig, node.Blockchain().Config(), blockchain, node.TransactionErrorSink)
node.CxPool = core.NewCxPool(core.CxPoolSize)
node.Worker = worker.New(node.Blockchain().Config(), blockchain, chain.Engine)
if node.Blockchain().ShardID() != shard.BeaconChainShardID {
node.BeaconWorker = worker.New(
node.Beaconchain().Config(), beaconChain, chain.Engine,
)
}
node.pendingCXReceipts = map[string]*types.CXReceiptsProof{}
node.Consensus.VerifiedNewBlock = make(chan *types.Block)
chain.Engine.SetBeaconchain(beaconChain)
// the sequence number is the next block number to be added in consensus protocol, which is
// always one more than current chain header block
node.Consensus.SetBlockNum(blockchain.CurrentBlock().NumberU64() + 1)
}
utils.Logger().Info().
Interface("genesis block header", node.Blockchain().GetHeaderByNumber(0)).
Msg("Genesis block hash")
// Setup initial state of syncing.
node.peerRegistrationRecord = map[string]*syncConfig{}
node.startConsensus = make(chan struct{})
// Broadcast double-signers reported by consensus
if node.Consensus != nil {
go func() {
for doubleSign := range node.Consensus.SlashChan {
utils.Logger().Info().
RawJSON("double-sign-candidate", []byte(doubleSign.String())).
Msg("double sign notified by consensus leader")
// no point to broadcast the slash if we aren't even in the right epoch yet
if !node.Blockchain().Config().IsStaking(
node.Blockchain().CurrentHeader().Epoch(),
) {
return
}
if hooks := node.NodeConfig.WebHooks.Hooks; hooks != nil {
if s := hooks.Slashing; s != nil {
url := s.OnNoticeDoubleSign
go func() { webhooks.DoPost(url, &doubleSign) }()
}
}
if node.NodeConfig.ShardID != shard.BeaconChainShardID {
go node.BroadcastSlash(&doubleSign)
} else {
records := slash.Records{doubleSign}
if err := node.Blockchain().AddPendingSlashingCandidates(
records,
); err != nil {
utils.Logger().Err(err).Msg("could not add new slash to ending slashes")
}
}
}
}()
}
go func() {
ticker := time.NewTicker(time.Minute)
defer ticker.Stop()
for {
select {
case <-ticker.C:
utils.Logger().Info().
Uint32("P2PMessage", node.NumP2PMessages).
Uint32("TotalMessage", node.NumTotalMessages).
Uint32("ValidMessage", node.NumValidMessages).
Uint32("InvalidMessage", node.NumInvalidMessages).
Uint32("SlotMessage", node.NumSlotMessages).
Uint32("IgnoredMessage", node.NumIgnoredMessages).
Msg("MsgValidator")
atomic.StoreUint32(&node.NumInvalidMessages, 0)
atomic.StoreUint32(&node.NumSlotMessages, 0)
atomic.StoreUint32(&node.NumIgnoredMessages, 0)
atomic.StoreUint32(&node.NumValidMessages, 0)
atomic.StoreUint32(&node.NumTotalMessages, 0)
atomic.StoreUint32(&node.NumP2PMessages, 0)
}
}
}()
return &node
}
// InitConsensusWithValidators initialize shard state
// from latest epoch and update committee pub
// keys for consensus
func (node *Node) InitConsensusWithValidators() (err error) {
if node.Consensus == nil {
utils.Logger().Error().
Msg("[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID")
return errors.New(
"[InitConsensusWithValidators] consenus is nil; Cannot figure out shardID",
)
}
shardID := node.Consensus.ShardID
blockNum := node.Blockchain().CurrentBlock().NumberU64()
node.Consensus.SetMode(consensus.Listening)
epoch := shard.Schedule.CalcEpochNumber(blockNum)
utils.Logger().Info().
Uint64("blockNum", blockNum).
Uint32("shardID", shardID).
Uint64("epoch", epoch.Uint64()).
Msg("[InitConsensusWithValidators] Try To Get PublicKeys")
shardState, err := committee.WithStakingEnabled.Compute(
epoch, node.Consensus.ChainReader,
)
if err != nil {
utils.Logger().Err(err).
Uint64("blockNum", blockNum).
Uint32("shardID", shardID).
Uint64("epoch", epoch.Uint64()).
Msg("[InitConsensusWithValidators] Failed getting shard state")
return err
}
subComm, err := shardState.FindCommitteeByID(shardID)
if err != nil {
return err
}
pubKeys, err := subComm.BLSPublicKeys()
if err != nil {
utils.Logger().Error().
Uint32("shardID", shardID).
Uint64("blockNum", blockNum).
Msg("[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys")
return errors.Wrapf(
err,
"[InitConsensusWithValidators] PublicKeys is Empty, Cannot update public keys",
)
}
for _, key := range pubKeys {
if node.Consensus.GetPublicKeys().Contains(key) {
utils.Logger().Info().
Uint64("blockNum", blockNum).
Int("numPubKeys", len(pubKeys)).
Msg("[InitConsensusWithValidators] Successfully updated public keys")
node.Consensus.UpdatePublicKeys(pubKeys)
node.Consensus.SetMode(consensus.Normal)
return nil
}
}
return nil
}
// AddPeers adds neighbors nodes
func (node *Node) AddPeers(peers []*p2p.Peer) int {
for _, p := range peers {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.Neighbors.LoadOrStore(key, *p)
if !ok {
// !ok means new peer is stored
node.host.AddPeer(p)
continue
}
}
return node.host.GetPeerCount()
}
// AddBeaconPeer adds beacon chain neighbors nodes
// Return false means new neighbor peer was added
// Return true means redundant neighbor peer wasn't added
func (node *Node) AddBeaconPeer(p *p2p.Peer) bool {
key := fmt.Sprintf("%s:%s:%s", p.IP, p.Port, p.PeerID)
_, ok := node.BeaconNeighbors.LoadOrStore(key, *p)
return ok
}
func (node *Node) initNodeConfiguration() (service.NodeConfig, chan p2p.Peer, error) {
chanPeer := make(chan p2p.Peer)
nodeConfig := service.NodeConfig{
IsClient: node.NodeConfig.IsClient(),
Beacon: nodeconfig.NewGroupIDByShardID(shard.BeaconChainShardID),
ShardGroupID: node.NodeConfig.GetShardGroupID(),
Actions: map[nodeconfig.GroupID]nodeconfig.ActionType{},
}
if nodeConfig.IsClient {
nodeConfig.Actions[nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID)] =
nodeconfig.ActionStart
} else {
nodeConfig.Actions[node.NodeConfig.GetShardGroupID()] = nodeconfig.ActionStart
}
groups := []nodeconfig.GroupID{
node.NodeConfig.GetShardGroupID(),
nodeconfig.NewClientGroupIDByShardID(shard.BeaconChainShardID),
node.NodeConfig.GetClientGroupID(),
}
// force the side effect of topic join
if err := node.host.SendMessageToGroups(groups, []byte{}); err != nil {
return nodeConfig, nil, err
}
return nodeConfig, chanPeer, nil
}
// ServiceManager ...
func (node *Node) ServiceManager() *service.Manager {
return node.serviceManager
}
// ShutDown gracefully shut down the node server and dump the in-memory blockchain state into DB.
func (node *Node) ShutDown() {
node.Blockchain().Stop()
node.Beaconchain().Stop()
const msg = "Successfully shut down!\n"
utils.Logger().Print(msg)
fmt.Print(msg)
os.Exit(0)
}
func (node *Node) populateSelfAddresses(epoch *big.Int) {
// reset the self addresses
node.KeysToAddrs = map[string]common.Address{}
node.keysToAddrsEpoch = epoch
shardID := node.Consensus.ShardID
shardState, err := node.Consensus.ChainReader.ReadShardState(epoch)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Msg("[PopulateSelfAddresses] failed to read shard")
return
}
committee, err := shardState.FindCommitteeByID(shardID)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Msg("[PopulateSelfAddresses] failed to find shard committee")
return
}
for _, blskey := range node.Consensus.GetPublicKeys() {
blsStr := blskey.Bytes.Hex()
shardkey := bls.FromLibBLSPublicKeyUnsafe(blskey.Object)
if shardkey == nil {
utils.Logger().Error().
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("blskey", blsStr).
Msg("[PopulateSelfAddresses] failed to get shard key from bls key")
return
}
addr, err := committee.AddressForBLSKey(*shardkey)
if err != nil {
utils.Logger().Error().Err(err).
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("blskey", blsStr).
Msg("[PopulateSelfAddresses] could not find address")
return
}
node.KeysToAddrs[blsStr] = *addr
utils.Logger().Debug().
Int64("epoch", epoch.Int64()).
Uint32("shard-id", shardID).
Str("bls-key", blsStr).
Str("address", common2.MustAddressToBech32(*addr)).
Msg("[PopulateSelfAddresses]")
}
}
// GetAddressForBLSKey retrieves the ECDSA address associated with bls key for epoch
func (node *Node) GetAddressForBLSKey(blskey *bls_core.PublicKey, epoch *big.Int) common.Address {
// populate if first time setting or new epoch
node.keysToAddrsMutex.Lock()
defer node.keysToAddrsMutex.Unlock()
if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 {
node.populateSelfAddresses(epoch)
}
blsStr := blskey.SerializeToHexStr()
addr, ok := node.KeysToAddrs[blsStr]
if !ok {
return common.Address{}
}
return addr
}
// GetAddresses retrieves all ECDSA addresses of the bls keys for epoch
func (node *Node) GetAddresses(epoch *big.Int) map[string]common.Address {
// populate if first time setting or new epoch
node.keysToAddrsMutex.Lock()
defer node.keysToAddrsMutex.Unlock()
if node.keysToAddrsEpoch == nil || epoch.Cmp(node.keysToAddrsEpoch) != 0 {
node.populateSelfAddresses(epoch)
}
// self addresses map can never be nil
return node.KeysToAddrs
}