The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/node/node.go

330 lines
12 KiB

package node
import (
"bytes"
"crypto/ecdsa"
"encoding/gob"
"fmt"
"math/big"
"math/rand"
"net"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/harmony-one/harmony/core"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/core/vm"
"github.com/harmony-one/harmony/node/worker"
"github.com/harmony-one/harmony/blockchain"
"github.com/harmony-one/harmony/client"
bft "github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/crypto/pki"
hdb "github.com/harmony-one/harmony/db"
"github.com/harmony-one/harmony/log"
"github.com/harmony-one/harmony/p2p"
proto_identity "github.com/harmony-one/harmony/proto/identity"
proto_node "github.com/harmony-one/harmony/proto/node"
)
type NodeState byte
const (
NodeInit NodeState = iota // Node just started, before contacting BeaconChain
NodeWaitToJoin // Node contacted BeaconChain, wait to join Shard
NodeJoinedShard // Node joined Shard, ready for consensus
NodeOffline // Node is offline
)
type NetworkNode struct {
SelfPeer p2p.Peer
IDCPeer p2p.Peer
}
// Node represents a program (machine) participating in the network
// TODO(minhdoan, rj): consider using BlockChannel *chan blockchain.Block for efficiency.
type Node struct {
Consensus *bft.Consensus // Consensus object containing all Consensus related data (e.g. committee members, signatures, commits)
BlockChannel chan blockchain.Block // The channel to receive new blocks from Node
pendingTransactions []*blockchain.Transaction // All the transactions received but not yet processed for Consensus
transactionInConsensus []*blockchain.Transaction // The transactions selected into the new block and under Consensus process
blockchain *blockchain.Blockchain // The blockchain for the shard where this node belongs
db *hdb.LDBDatabase // LevelDB to store blockchain.
UtxoPool *blockchain.UTXOPool // The corresponding UTXO pool of the current blockchain
CrossTxsInConsensus []*blockchain.CrossShardTxAndProof // The cross shard txs that is under consensus, the proof is not filled yet.
CrossTxsToReturn []*blockchain.CrossShardTxAndProof // The cross shard txs and proof that needs to be sent back to the user client.
log log.Logger // Log utility
pendingTxMutex sync.Mutex
crossTxToReturnMutex sync.Mutex
ClientPeer *p2p.Peer // The peer for the benchmark tx generator client, used for leaders to return proof-of-accept
Client *client.Client // The presence of a client object means this node will also act as a client
IsWaiting bool
SelfPeer p2p.Peer // TODO(minhdoan): it could be duplicated with Self below whose is Alok work.
IDCPeer p2p.Peer
SyncNode bool // TODO(minhdoan): Remove it later.
chain *core.BlockChain // Account Model
Neighbors sync.Map // All the neighbor nodes, key is the sha256 of Peer IP/Port, value is the p2p.Peer
State NodeState // State of the Node
// Account Model
pendingTransactionsAccount types.Transactions // TODO: replace with txPool
pendingTxMutexAccount sync.Mutex
Chain *core.BlockChain
TxPool *core.TxPool
BlockChannelAccount chan *types.Block // The channel to receive new blocks from Node
Worker *worker.Worker
// Test only
TestBankKeys []*ecdsa.PrivateKey
}
// Add new crossTx and proofs to the list of crossTx that needs to be sent back to client
func (node *Node) addCrossTxsToReturn(crossTxs []*blockchain.CrossShardTxAndProof) {
node.crossTxToReturnMutex.Lock()
node.CrossTxsToReturn = append(node.CrossTxsToReturn, crossTxs...)
node.crossTxToReturnMutex.Unlock()
node.log.Debug("Got more cross transactions to return", "num", len(crossTxs), len(node.pendingTransactions), "node", node)
}
// Add new transactions to the pending transaction list
func (node *Node) addPendingTransactions(newTxs []*blockchain.Transaction) {
node.pendingTxMutex.Lock()
node.pendingTransactions = append(node.pendingTransactions, newTxs...)
node.pendingTxMutex.Unlock()
node.log.Debug("Got more transactions", "num", len(newTxs), "totalPending", len(node.pendingTransactions), "node", node)
}
// Add new transactions to the pending transaction list
func (node *Node) addPendingTransactionsAccount(newTxs types.Transactions) {
node.pendingTxMutexAccount.Lock()
node.pendingTransactionsAccount = append(node.pendingTransactionsAccount, newTxs...)
node.pendingTxMutexAccount.Unlock()
node.log.Debug("Got more transactions (account model)", "num", len(newTxs), "totalPending", len(node.pendingTransactions), "node", node)
}
// Take out a subset of valid transactions from the pending transaction list
// Note the pending transaction list will then contain the rest of the txs
func (node *Node) getTransactionsForNewBlock(maxNumTxs int) ([]*blockchain.Transaction, []*blockchain.CrossShardTxAndProof) {
node.pendingTxMutex.Lock()
selected, unselected, invalid, crossShardTxs := node.UtxoPool.SelectTransactionsForNewBlock(node.pendingTransactions, maxNumTxs)
_ = invalid // invalid txs are discard
node.log.Debug("Invalid transactions discarded", "number", len(invalid))
node.pendingTransactions = unselected
node.pendingTxMutex.Unlock()
return selected, crossShardTxs
}
// Take out a subset of valid transactions from the pending transaction list
// Note the pending transaction list will then contain the rest of the txs
func (node *Node) getTransactionsForNewBlockAccount(maxNumTxs int) (types.Transactions, []*blockchain.CrossShardTxAndProof) {
node.pendingTxMutexAccount.Lock()
selected, unselected, invalid, crossShardTxs := node.pendingTransactionsAccount, types.Transactions{}, types.Transactions{}, []*blockchain.CrossShardTxAndProof{}
_ = invalid // invalid txs are discard
node.log.Debug("Invalid transactions discarded", "number", len(invalid))
node.pendingTransactionsAccount = unselected
node.pendingTxMutexAccount.Unlock()
return selected, crossShardTxs //TODO: replace cross-shard proofs for account model
}
// StartServer starts a server and process the request by a handler.
func (node *Node) StartServer(port string) {
if node.SyncNode {
// Disable this temporarily.
// node.blockchain = syncing.StartBlockSyncing(node.Consensus.GetValidatorPeers())
}
fmt.Println("going to start server on port:", port)
//node.log.Debug("Starting server", "node", node, "port", port)
node.listenOnPort(port)
}
func (node *Node) SetLog() *Node {
node.log = log.New()
return node
}
func (node *Node) listenOnPort(port string) {
addr := net.JoinHostPort("", port)
listen, err := net.Listen("tcp4", addr)
if err != nil {
node.log.Error("Socket listen port failed", "addr", addr, "err", err)
return
}
if listen == nil {
node.log.Error("Listen returned nil", "addr", addr)
return
}
defer listen.Close()
backoff := p2p.NewExpBackoff(250*time.Millisecond, 15*time.Second, 2.0)
for {
conn, err := listen.Accept()
if err != nil {
node.log.Error("Error listening on port.", "port", port,
"err", err)
backoff.Sleep()
continue
}
go node.NodeHandler(conn)
}
}
func (node *Node) String() string {
return node.Consensus.String()
}
// Count the total number of transactions in the blockchain
// Currently used for stats reporting purpose
func (node *Node) countNumTransactionsInBlockchain() int {
count := 0
for _, block := range node.blockchain.Blocks {
count += len(block.Transactions)
}
return count
}
// Count the total number of transactions in the blockchain
// Currently used for stats reporting purpose
func (node *Node) countNumTransactionsInBlockchainAccount() int {
count := 0
for curBlock := node.Chain.CurrentBlock(); curBlock != nil; {
count += len(curBlock.Transactions())
curBlock = node.Chain.GetBlockByHash(curBlock.ParentHash())
}
return count
}
//ConnectIdentityChain connects to identity chain
func (node *Node) ConnectBeaconChain() {
Nnode := &NetworkNode{SelfPeer: node.SelfPeer, IDCPeer: node.IDCPeer}
msg := node.SerializeNode(Nnode)
msgToSend := proto_identity.ConstructIdentityMessage(proto_identity.Register, msg)
p2p.SendMessage(node.IDCPeer, msgToSend)
}
// SerializeNode serializes the node
// https://stackoverflow.com/questions/12854125/how-do-i-dump-the-struct-into-the-byte-array-without-reflection/12854659#12854659
func (node *Node) SerializeNode(nnode *NetworkNode) []byte {
//Needs to escape the serialization of unexported fields
var result bytes.Buffer
encoder := gob.NewEncoder(&result)
err := encoder.Encode(nnode)
if err != nil {
fmt.Println("Could not serialize node")
fmt.Println("ERROR", err)
//node.log.Error("Could not serialize node")
}
return result.Bytes()
}
// DeserializeNode deserializes the node
func DeserializeNode(d []byte) *NetworkNode {
var wn NetworkNode
r := bytes.NewBuffer(d)
decoder := gob.NewDecoder(r)
err := decoder.Decode(&wn)
if err != nil {
log.Error("Could not de-serialize node 1")
}
return &wn
}
// New creates a new node.
func New(consensus *bft.Consensus, db *hdb.LDBDatabase) *Node {
node := Node{}
if consensus != nil {
// Consensus and associated channel to communicate blocks
node.Consensus = consensus
node.BlockChannel = make(chan blockchain.Block)
// Genesis Block
// TODO(minh): Use or implement new function in blockchain package for this.
genesisBlock := &blockchain.Blockchain{}
genesisBlock.Blocks = make([]*blockchain.Block, 0)
// TODO(RJ): use miner's address as coinbase address
coinbaseTx := blockchain.NewCoinbaseTX(pki.GetAddressFromInt(1), "0", node.Consensus.ShardID)
genesisBlock.Blocks = append(genesisBlock.Blocks, blockchain.NewGenesisBlock(coinbaseTx, node.Consensus.ShardID))
node.blockchain = genesisBlock
// UTXO pool from Genesis block
node.UtxoPool = blockchain.CreateUTXOPoolFromGenesisBlock(node.blockchain.Blocks[0])
// Initialize level db.
node.db = db
// (account model)
rand.Seed(0)
len := 1000000
bytes := make([]byte, len)
for i := 0; i < len; i++ {
bytes[i] = byte(rand.Intn(100))
}
reader := strings.NewReader(string(bytes))
genesisAloc := make(core.GenesisAlloc)
for i := 0; i < 100; i++ {
testBankKey, _ := ecdsa.GenerateKey(crypto.S256(), reader)
testBankAddress := crypto.PubkeyToAddress(testBankKey.PublicKey)
testBankFunds := big.NewInt(10000000000)
genesisAloc[testBankAddress] = core.GenesisAccount{Balance: testBankFunds}
node.TestBankKeys = append(node.TestBankKeys, testBankKey)
}
database := hdb.NewMemDatabase()
gspec := core.Genesis{
Config: params.TestChainConfig,
Alloc: genesisAloc,
}
_ = gspec.MustCommit(database)
chain, _ := core.NewBlockChain(database, nil, gspec.Config, bft.NewFaker(), vm.Config{}, nil)
node.Chain = chain
node.TxPool = core.NewTxPool(core.DefaultTxPoolConfig, params.TestChainConfig, chain)
node.BlockChannelAccount = make(chan *types.Block)
node.Worker = worker.New(params.TestChainConfig, chain, bft.NewFaker())
}
// Logger
node.log = log.New()
node.State = NodeInit
return &node
}
// Add neighbors nodes
func (node *Node) AddPeers(peers []p2p.Peer) int {
count := 0
for _, p := range peers {
key := fmt.Sprintf("%v", p.PubKey)
_, ok := node.Neighbors.Load(key)
if !ok {
node.Neighbors.Store(key, p)
count++
}
}
if count > 0 {
c := node.Consensus.AddPeers(peers)
node.log.Info("Node.AddPeers", "#", c)
}
return count
}
func (node *Node) JoinShard(leader p2p.Peer) {
// try to join the shard, with 10 minutes time-out
backoff := p2p.NewExpBackoff(1*time.Second, 10*time.Minute, 2)
for node.State == NodeWaitToJoin {
backoff.Sleep()
ping := proto_node.NewPingMessage(node.SelfPeer)
buffer := ping.ConstructPingMessage()
p2p.SendMessage(leader, buffer)
node.log.Debug("Sent ping message")
}
}