The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/cmd/client/txgen/main.go

252 lines
9.3 KiB

package main
import (
"flag"
"fmt"
"math/big"
"math/rand"
"os"
"path"
"runtime"
"sync"
"time"
"github.com/harmony-one/harmony/consensus"
"github.com/harmony-one/harmony/core"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
bls2 "github.com/harmony-one/bls/ffi/go/bls"
"github.com/harmony-one/harmony/api/client"
proto_node "github.com/harmony-one/harmony/api/proto/node"
"github.com/harmony-one/harmony/core/types"
"github.com/harmony-one/harmony/crypto/bls"
nodeconfig "github.com/harmony-one/harmony/internal/configs/node"
"github.com/harmony-one/harmony/internal/utils"
"github.com/harmony-one/harmony/internal/utils/contract"
"github.com/harmony-one/harmony/node"
"github.com/harmony-one/harmony/p2p"
p2p_host "github.com/harmony-one/harmony/p2p/host"
"github.com/harmony-one/harmony/p2p/p2pimpl"
)
var (
version string
builtBy string
builtAt string
commit string
stateMutex sync.Mutex
)
const (
checkFrequency = 2 //checkfrequency checks whether the transaction generator is ready to send the next batch of transactions.
)
// Settings is the settings for TX generation. No Cross-Shard Support!
type Settings struct {
NumOfAddress int
MaxNumTxsPerBatch int
}
func printVersion(me string) {
fmt.Fprintf(os.Stderr, "Harmony (C) 2018. %v, version %v-%v (%v %v)\n", path.Base(me), version, commit, builtBy, builtAt)
os.Exit(0)
}
// The main entrance for the transaction generator program which simulate transactions and send to the network for
// processing.
var (
ip = flag.String("ip", "127.0.0.1", "IP of the node")
port = flag.String("port", "9999", "port of the node.")
maxNumTxsPerBatch = flag.Int("max_num_txs_per_batch", 20000, "number of transactions to send per message")
logFolder = flag.String("log_folder", "latest", "the folder collecting the logs of this execution")
duration = flag.Int("duration", 30, "duration of the tx generation in second. If it's negative, the experiment runs forever.")
versionFlag = flag.Bool("version", false, "Output version info")
crossShardRatio = flag.Int("cross_shard_ratio", 30, "The percentage of cross shard transactions.") //Keeping this for backward compatibility
shardIDFlag = flag.Int("shardID", 0, "The shardID the node belongs to.")
// Key file to store the private key
keyFile = flag.String("key", "./.txgenkey", "the private key file of the txgen")
// logging verbosity
verbosity = flag.Int("verbosity", 3, "Logging verbosity: 0=silent, 1=error, 2=warn, 3=info, 4=debug, 5=detail (default: 3)")
)
func setUpTXGen() *node.Node {
nodePriKey, _, err := utils.LoadKeyFromFile(*keyFile)
if err != nil {
panic(err)
}
peerPubKey := bls.RandPrivateKey().GetPublicKey()
if peerPubKey == nil {
panic(fmt.Errorf("generate key error"))
}
shardID := *shardIDFlag
selfPeer := p2p.Peer{IP: *ip, Port: *port, ConsensusPubKey: peerPubKey}
gsif, err := consensus.NewGenesisStakeInfoFinder()
// Nodes containing blockchain data to mirror the shards' data in the network
myhost, err := p2pimpl.NewHost(&selfPeer, nodePriKey)
if err != nil {
panic("unable to new host in txgen")
}
if err != nil {
fmt.Fprintf(os.Stderr, "Error :%v \n", err)
os.Exit(1)
}
consensusObj, err := consensus.New(myhost, uint32(shardID), p2p.Peer{}, nil)
txGen := node.New(myhost, consensusObj, nil, false) //Changed it : no longer archival node.
txGen.Client = client.NewClient(txGen.GetHost(), uint32(shardID))
consensusObj.SetStakeInfoFinder(gsif)
consensusObj.ChainReader = txGen.Blockchain()
consensusObj.PublicKeys = nil
startIdx := 0
endIdx := startIdx + core.GenesisShardSize
for _, acct := range contract.GenesisBLSAccounts[startIdx:endIdx] {
secretKey := bls2.SecretKey{}
if err := secretKey.SetHexString(acct.Private); err != nil {
_, _ = fmt.Fprintf(os.Stderr, "cannot parse secret key: %v\n",
err)
os.Exit(1)
}
consensusObj.PublicKeys = append(consensusObj.PublicKeys, secretKey.GetPublicKey())
}
txGen.NodeConfig.SetRole(nodeconfig.ClientNode)
txGen.NodeConfig.SetIsBeacon(true)
txGen.NodeConfig.SetIsClient(true)
txGen.NodeConfig.SetShardGroupID(p2p.GroupIDBeacon)
return txGen
}
func main() {
flag.Var(&utils.BootNodes, "bootnodes", "a list of bootnode multiaddress")
flag.Parse()
if *versionFlag {
printVersion(os.Args[0])
}
// Add GOMAXPROCS to achieve max performance.
runtime.GOMAXPROCS(1024)
// Logging setup
utils.SetLogContext(*port, *ip)
utils.SetLogVerbosity(log.Lvl(*verbosity))
if len(utils.BootNodes) == 0 {
bootNodeAddrs, err := utils.StringsToAddrs(utils.DefaultBootNodeAddrStrings)
if err != nil {
panic(err)
}
utils.BootNodes = bootNodeAddrs
}
// Init with LibP2P enabled, FIXME: (leochen) right now we support only one shard
setting := Settings{
NumOfAddress: 10000,
MaxNumTxsPerBatch: *maxNumTxsPerBatch,
}
utils.GetLogInstance().Debug("Cross Shard Ratio Is Set But not used", "cx ratio", *crossShardRatio)
// TODO(Richard): refactor this chuck to a single method
// Setup a logger to stdout and log file.
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder)
h := log.MultiHandler(
log.StreamHandler(os.Stdout, log.TerminalFormat(false)),
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
)
log.Root().SetHandler(h)
txGen := setUpTXGen()
txGen.ServiceManagerSetup()
txGen.RunServices()
time.Sleep(20 * time.Second)
start := time.Now()
totalTime := float64(*duration)
utils.GetLogInstance().Debug("Total Duration", "totalTime", totalTime)
ticker := time.NewTicker(checkFrequency * time.Second)
txGen.DoSyncWithoutConsensus()
syncLoop:
for {
t := time.Now()
if totalTime > 0 && t.Sub(start).Seconds() >= totalTime {
utils.GetLogInstance().Debug("Generator timer ended in syncLoop.", "duration", (int(t.Sub(start))), "startTime", start, "totalTime", totalTime)
break syncLoop
}
select {
case <-ticker.C:
if txGen.State.String() == "NodeReadyForConsensus" {
utils.GetLogInstance().Debug("Generator is now in Sync.", "txgen node", txGen.SelfPeer, "Node State", txGen.State.String())
ticker.Stop()
break syncLoop
}
}
}
readySignal := make(chan uint32)
// This func is used to update the client's blockchain when new blocks are received from the leaders
updateBlocksFunc := func(blocks []*types.Block) {
utils.GetLogInstance().Info("[Txgen] Received new block", "block num", blocks[0].NumberU64())
for _, block := range blocks {
shardID := block.ShardID()
if txGen.Consensus.ShardID == shardID {
utils.GetLogInstance().Info("Adding block from leader", "txNum", len(block.Transactions()), "shardID", shardID, "preHash", block.ParentHash().Hex(), "currentBlock", txGen.Blockchain().CurrentBlock().NumberU64(), "incoming block", block.NumberU64())
txGen.AddNewBlock(block)
stateMutex.Lock()
txGen.Worker.UpdateCurrent()
stateMutex.Unlock()
readySignal <- shardID
} else {
continue
}
}
}
txGen.Client.UpdateBlocks = updateBlocksFunc
// Start the client server to listen to leader's message
go func() {
// wait for 3 seconds for client to send ping message to leader
// FIXME (leo) the readySignal should be set once we really sent ping message to leader
time.Sleep(3 * time.Second) // wait for nodes to be ready
readySignal <- uint32(0)
}()
pushLoop:
for {
t := time.Now()
utils.GetLogInstance().Debug("Current running time", "running time", t.Sub(start).Seconds(), "totaltime", totalTime)
if totalTime > 0 && t.Sub(start).Seconds() >= totalTime {
utils.GetLogInstance().Debug("Generator timer ended.", "duration", (int(t.Sub(start))), "startTime", start, "totalTime", totalTime)
break pushLoop
}
select {
case shardID := <-readySignal:
lock := sync.Mutex{}
utils.GetLogInstance().Warn("STARTING TX GEN PUSH LOOP", "gomaxprocs", runtime.GOMAXPROCS(0))
txs, err := GenerateSimulatedTransactionsAccount(uint32(shardID), txGen, setting)
if err != nil {
utils.GetLogInstance().Debug("Error in Generating Txns", "Err", err)
}
lock.Lock()
SendTxsToShard(txGen, txs)
lock.Unlock()
case <-time.After(10 * time.Second):
utils.GetLogInstance().Warn("No new block is received so far")
}
}
}
// SendTxsToShard sends txs to shard, currently just to beacon shard
func SendTxsToShard(clientNode *node.Node, txs types.Transactions) {
msg := proto_node.ConstructTransactionListMessageAccount(txs)
err := clientNode.GetHost().SendMessageToGroups([]p2p.GroupID{p2p.GroupIDBeaconClient}, p2p_host.ConstructP2pMessage(byte(0), msg))
if err != nil {
utils.GetLogInstance().Debug("Error in Sending Txns", "Err", err)
}
}
// GenerateSimulatedTransactionsAccount generates simulated transaction for account model.
func GenerateSimulatedTransactionsAccount(shardID uint32, node *node.Node, setting Settings) (types.Transactions, error) {
_ = setting // TODO: make use of settings
txs := make([]*types.Transaction, 100)
for i := 0; i < 100; i++ {
baseNonce := node.Worker.GetCurrentState().GetNonce(crypto.PubkeyToAddress(node.TestBankKeys[i].PublicKey))
randomUserAddress := crypto.PubkeyToAddress(node.TestBankKeys[rand.Intn(100)].PublicKey)
randAmount := rand.Float32()
tx, _ := types.SignTx(types.NewTransaction(baseNonce+uint64(0), randomUserAddress, shardID, big.NewInt(int64(params.Ether*randAmount)), params.TxGas, nil, nil), types.HomesteadSigner{}, node.TestBankKeys[i])
txs[i] = tx
}
return txs, nil
}