The core protocol of WoopChain
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
woop/client/txgen/main.go

366 lines
12 KiB

package main
import (
"encoding/hex"
"flag"
"fmt"
"math/rand"
"sync"
"time"
"github.com/simple-rules/harmony-benchmark/blockchain"
"github.com/simple-rules/harmony-benchmark/client"
"github.com/simple-rules/harmony-benchmark/configr"
"github.com/simple-rules/harmony-benchmark/consensus"
"github.com/simple-rules/harmony-benchmark/crypto/pki"
"github.com/simple-rules/harmony-benchmark/log"
"github.com/simple-rules/harmony-benchmark/node"
"github.com/simple-rules/harmony-benchmark/p2p"
proto_node "github.com/simple-rules/harmony-benchmark/proto/node"
)
type txGenSettings struct {
numOfAddress int
crossShard bool
maxNumTxsPerBatch int
}
var (
utxoPoolMutex sync.Mutex
setting txGenSettings
)
type TxInfo struct {
// Global Input
shardID int
dataNodes []*node.Node
// Temp Input
id [32]byte
index uint32
value int
address [20]byte
// Output
txs []*blockchain.Transaction
crossTxs []*blockchain.Transaction
txCount int
}
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
// The transactions are generated by going through the existing utxos and
// randomly select a subset of them as the input for each new transaction. The output
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
//
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
// Similarly, generate another utxo output in that second shard.
//
// NOTE: the genesis block should contain N coinbase transactions which add
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
//
// Params:
// shardID - the shardID for current shard
// dataNodes - nodes containing utxopools of all shards
// Returns:
// all single-shard txs
// all cross-shard txs
func generateSimulatedTransactions(shardID int, dataNodes []*node.Node) ([]*blockchain.Transaction, []*blockchain.Transaction) {
/*
UTXO map structure:
address - [
txId1 - [
outputIndex1 - value1
outputIndex2 - value2
]
txId2 - [
outputIndex1 - value1
outputIndex2 - value2
]
]
*/
utxoPoolMutex.Lock()
txInfo := TxInfo{}
txInfo.shardID = shardID
txInfo.dataNodes = dataNodes
txInfo.txCount = 0
UTXOLOOP:
// Loop over all addresses
for address, txMap := range dataNodes[shardID].UtxoPool.UtxoMap {
txInfo.address = address
// Loop over all txIds for the address
for txIdStr, utxoMap := range txMap {
// Parse TxId
id, err := hex.DecodeString(txIdStr)
if err != nil {
continue
}
copy(txInfo.id[:], id[:])
// Loop over all utxos for the txId
for index, value := range utxoMap {
txInfo.index = index
txInfo.value = value
randNum := rand.Intn(100)
// 30% sample rate to select UTXO to use for new transactions
if randNum >= 30 {
continue
}
if setting.crossShard && randNum < 10 { // 1/3 cross shard transactions: add another txinput from another shard
generateCrossShardTx(&txInfo)
} else {
generateSingleShardTx(&txInfo)
}
if txInfo.txCount >= setting.maxNumTxsPerBatch {
break UTXOLOOP
}
}
}
}
utxoPoolMutex.Unlock()
log.Debug("[Generator] generated transations", "single-shard", len(txInfo.txs), "cross-shard", len(txInfo.crossTxs))
return txInfo.txs, txInfo.crossTxs
}
func generateCrossShardTx(txInfo *TxInfo) {
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
// shard with neighboring Id
crossShardId := (int(nodeShardID) + 1) % len(txInfo.dataNodes)
crossShardNode := txInfo.dataNodes[crossShardId]
crossShardUtxosMap := crossShardNode.UtxoPool.UtxoMap[txInfo.address]
// Get the cross shard utxo from another shard
var crossTxin *blockchain.TXInput
crossUtxoValue := 0
// Loop over utxos for the same address from the other shard and use the first utxo as the second cross tx input
for crossTxIdStr, crossShardUtxos := range crossShardUtxosMap {
// Parse TxId
id, err := hex.DecodeString(crossTxIdStr)
if err != nil {
continue
}
crossTxId := [32]byte{}
copy(crossTxId[:], id[:])
for crossShardIndex, crossShardValue := range crossShardUtxos {
crossUtxoValue = crossShardValue
crossTxin = blockchain.NewTXInput(blockchain.NewOutPoint(&crossTxId, crossShardIndex), txInfo.address, uint32(crossShardId))
break
}
if crossTxin != nil {
break
}
}
// Add the utxo from current shard
txIn := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
txInputs := []blockchain.TXInput{*txIn}
// Add the utxo from the other shard, if any
if crossTxin != nil { // This means the ratio of cross shard tx could be lower than 1/3
txInputs = append(txInputs, *crossTxin)
}
// Spend the utxo from the current shard to a random address in [0 - N)
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: nodeShardID}
txOutputs := []blockchain.TXOutput{txout}
// Spend the utxo from the other shard, if any, to a random address in [0 - N)
if crossTxin != nil {
crossTxout := blockchain.TXOutput{Amount: crossUtxoValue, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: uint32(crossShardId)}
txOutputs = append(txOutputs, crossTxout)
}
// Construct the new transaction
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: txInputs, TxOutput: txOutputs, Proofs: nil}
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
if ok {
bytes, err := pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)).MarshalBinary()
if err == nil {
copy(tx.PublicKey[:], bytes)
} else {
log.Error("Failed to serialized public key", "error", err)
return
}
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
} else {
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
return
}
txInfo.crossTxs = append(txInfo.crossTxs, &tx)
txInfo.txCount++
}
func generateSingleShardTx(txInfo *TxInfo) {
nodeShardID := txInfo.dataNodes[txInfo.shardID].Consensus.ShardID
// Add the utxo as new tx input
txin := blockchain.NewTXInput(blockchain.NewOutPoint(&txInfo.id, txInfo.index), txInfo.address, nodeShardID)
// Spend the utxo to a random address in [0 - N)
txout := blockchain.TXOutput{Amount: txInfo.value, Address: pki.GetAddressFromInt(rand.Intn(setting.numOfAddress) + 1), ShardID: nodeShardID}
tx := blockchain.Transaction{ID: [32]byte{}, TxInput: []blockchain.TXInput{*txin}, TxOutput: []blockchain.TXOutput{txout}, Proofs: nil}
priKeyInt, ok := client.LookUpIntPriKey(txInfo.address)
if ok {
bytes, err := pki.GetPublicKeyFromScalar(pki.GetPrivateKeyScalarFromInt(priKeyInt)).MarshalBinary()
if err == nil {
copy(tx.PublicKey[:], bytes)
} else {
log.Error("Failed to serialized public key", "error", err)
return
}
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
tx.Sign(pki.GetPrivateKeyScalarFromInt(priKeyInt))
} else {
log.Error("Failed to look up the corresponding private key from address", "Address", txInfo.address)
return
}
txInfo.txs = append(txInfo.txs, &tx)
txInfo.txCount++
}
// A utility func that counts the total number of utxos in a pool.
func countNumOfUtxos(utxoPool *blockchain.UTXOPool) int {
countAll := 0
for _, utxoMap := range utxoPool.UtxoMap {
for txIdStr, val := range utxoMap {
_ = val
id, err := hex.DecodeString(txIdStr)
if err != nil {
continue
}
txId := [32]byte{}
copy(txId[:], id[:])
for _, utxo := range val {
_ = utxo
countAll++
}
}
}
return countAll
}
func main() {
configFile := flag.String("config_file", "local_config.txt", "file containing all ip addresses and config")
maxNumTxsPerBatch := flag.Int("max_num_txs_per_batch", 100000, "number of transactions to send per message")
logFolder := flag.String("log_folder", "latest", "the folder collecting the logs of this execution")
flag.Parse()
// Read the configs
configr := configr.NewConfigr()
configr.ReadConfigFile(*configFile)
leaders, shardIds := configr.GetLeadersAndShardIds()
setting.numOfAddress = 10000
// Do cross shard tx if there are more than one shard
setting.crossShard = len(shardIds) > 1
setting.maxNumTxsPerBatch = *maxNumTxsPerBatch
// TODO(Richard): refactor this chuck to a single method
// Setup a logger to stdout and log file.
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder)
h := log.MultiHandler(
log.StdoutHandler,
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
// log.Must.NetHandler("tcp", ":3000", log.JSONFormat()) // Log to remote
)
log.Root().SetHandler(h)
// Nodes containing utxopools to mirror the shards' data in the network
nodes := []*node.Node{}
for _, shardId := range shardIds {
node := node.New(&consensus.Consensus{ShardID: shardId}, nil)
// Assign many fake addresses so we have enough address to play with at first
node.AddTestingAddresses(setting.numOfAddress)
nodes = append(nodes, node)
}
// Client/txgenerator server node setup
clientPort := configr.GetClientPort()
consensusObj := consensus.NewConsensus("0", clientPort, "0", nil, p2p.Peer{})
clientNode := node.New(consensusObj, nil)
if clientPort != "" {
clientNode.Client = client.NewClient(&leaders)
// This func is used to update the client's utxopool when new blocks are received from the leaders
updateBlocksFunc := func(blocks []*blockchain.Block) {
log.Debug("Received new block from leader", "len", len(blocks))
for _, block := range blocks {
for _, node := range nodes {
if node.Consensus.ShardID == block.ShardId {
log.Debug("Adding block from leader", "shardId", block.ShardId)
// Add it to blockchain
utxoPoolMutex.Lock()
node.AddNewBlock(block)
utxoPoolMutex.Unlock()
} else {
continue
}
}
}
}
clientNode.Client.UpdateBlocks = updateBlocksFunc
// Start the client server to listen to leader's message
go func() {
clientNode.StartServer(clientPort)
}()
}
// Transaction generation process
time.Sleep(10 * time.Second) // wait for nodes to be ready
start := time.Now()
totalTime := 60.0 //run for 1 minutes
for true {
t := time.Now()
if t.Sub(start).Seconds() >= totalTime {
log.Debug("Generator timer ended.", "duration", (int(t.Sub(start))), "startTime", start, "totalTime", totalTime)
break
}
allCrossTxs := []*blockchain.Transaction{}
// Generate simulated transactions
for i, leader := range leaders {
txs, crossTxs := generateSimulatedTransactions(i, nodes)
allCrossTxs = append(allCrossTxs, crossTxs...)
log.Debug("[Generator] Sending single-shard txs ...", "leader", leader, "numTxs", len(txs), "numCrossTxs", len(crossTxs))
msg := proto_node.ConstructTransactionListMessage(txs)
p2p.SendMessage(leader, msg)
// Note cross shard txs are later sent in batch
}
if len(allCrossTxs) > 0 {
log.Debug("[Generator] Broadcasting cross-shard txs ...", "allCrossTxs", len(allCrossTxs))
msg := proto_node.ConstructTransactionListMessage(allCrossTxs)
p2p.BroadcastMessage(leaders, msg)
// Put cross shard tx into a pending list waiting for proofs from leaders
if clientPort != "" {
clientNode.Client.PendingCrossTxsMutex.Lock()
for _, tx := range allCrossTxs {
clientNode.Client.PendingCrossTxs[tx.ID] = tx
}
clientNode.Client.PendingCrossTxsMutex.Unlock()
}
}
time.Sleep(500 * time.Millisecond) // Send a batch of transactions periodically
}
// Send a stop message to stop the nodes at the end
msg := proto_node.ConstructStopMessage()
peers := append(configr.GetValidators(), leaders...)
p2p.BroadcastMessage(peers, msg)
}