Security analysis tool for EVM bytecode. Supports smart contracts built for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron and other EVM-compatible blockchains.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
mythril/tests/laser/keccak_tests.py

145 lines
4.1 KiB

from mythril.laser.smt import Solver, symbol_factory, And
from mythril.laser.ethereum.function_managers import keccak_function_manager
import z3
import pytest
@pytest.mark.parametrize(
"input1, input2, expected",
[
(symbol_factory.BitVecVal(100, 8), symbol_factory.BitVecVal(101, 8), z3.unsat),
(symbol_factory.BitVecVal(100, 8), symbol_factory.BitVecVal(100, 16), z3.unsat),
(symbol_factory.BitVecVal(100, 8), symbol_factory.BitVecVal(100, 8), z3.sat),
(
symbol_factory.BitVecSym("N1", 256),
symbol_factory.BitVecSym("N2", 256),
z3.sat,
),
(
symbol_factory.BitVecVal(100, 256),
symbol_factory.BitVecSym("N1", 256),
z3.sat,
),
(
symbol_factory.BitVecVal(100, 8),
symbol_factory.BitVecSym("N1", 256),
z3.unsat,
),
],
)
def test_keccak_basic(input1, input2, expected):
s = Solver()
keccak_function_manager.reset()
o1 = keccak_function_manager.create_keccak(input1)
o2 = keccak_function_manager.create_keccak(input2)
s.add(keccak_function_manager.create_conditions())
s.add(o1 == o2)
assert s.check() == expected
def test_keccak_symbol_and_val():
"""
check keccak(100) == keccak(n) && n == 10
:return:
"""
s = Solver()
keccak_function_manager.reset()
hundred = symbol_factory.BitVecVal(100, 256)
n = symbol_factory.BitVecSym("n", 256)
o1 = keccak_function_manager.create_keccak(hundred)
o2 = keccak_function_manager.create_keccak(n)
s.add(keccak_function_manager.create_conditions())
s.add(o1 == o2)
s.add(n == symbol_factory.BitVecVal(10, 256))
assert s.check() == z3.unsat
def test_keccak_complex_eq():
"""
check for keccak(keccak(b)*2) == keccak(keccak(a)*2) && a != b
:return:
"""
keccak_function_manager.reset()
s = Solver()
a = symbol_factory.BitVecSym("a", 160)
b = symbol_factory.BitVecSym("b", 160)
o1 = keccak_function_manager.create_keccak(a)
o2 = keccak_function_manager.create_keccak(b)
two = symbol_factory.BitVecVal(2, 256)
o1 = two * o1
o2 = two * o2
o1 = keccak_function_manager.create_keccak(o1)
o2 = keccak_function_manager.create_keccak(o2)
s.add(keccak_function_manager.create_conditions())
s.add(o1 == o2)
s.add(a != b)
assert s.check() == z3.unsat
def test_keccak_complex_eq2():
"""
check for keccak(keccak(b)*2) == keccak(keccak(a)*2)
This isn't combined with prev test because incremental solving here requires extra-extra work
(solution is literally the opposite of prev one) so it will take forever to solve.
:return:
"""
keccak_function_manager.reset()
s = Solver()
a = symbol_factory.BitVecSym("a", 160)
b = symbol_factory.BitVecSym("b", 160)
o1 = keccak_function_manager.create_keccak(a)
o2 = keccak_function_manager.create_keccak(b)
two = symbol_factory.BitVecVal(2, 256)
o1 = two * o1
o2 = two * o2
o1 = keccak_function_manager.create_keccak(o1)
o2 = keccak_function_manager.create_keccak(o2)
s.add(keccak_function_manager.create_conditions())
s.add(o1 == o2)
assert s.check() == z3.sat
def test_keccak_simple_number():
"""
check for keccak(b) == 10
:return:
"""
keccak_function_manager.reset()
s = Solver()
a = symbol_factory.BitVecSym("a", 160)
ten = symbol_factory.BitVecVal(10, 256)
o = keccak_function_manager.create_keccak(a)
s.add(keccak_function_manager.create_conditions())
s.add(ten == o)
assert s.check() == z3.unsat
def test_keccak_other_num():
"""
check keccak(keccak(a)*2) == b
:return:
"""
keccak_function_manager.reset()
s = Solver()
a = symbol_factory.BitVecSym("a", 160)
b = symbol_factory.BitVecSym("b", 256)
o = keccak_function_manager.create_keccak(a)
two = symbol_factory.BitVecVal(2, 256)
o = two * o
o = keccak_function_manager.create_keccak(o)
s.add(keccak_function_manager.create_conditions())
s.add(b == o)
assert s.check() == z3.sat