mirror of https://github.com/crytic/slither
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
1.4 KiB
52 lines
1.4 KiB
import argparse
|
|
import logging
|
|
import sys
|
|
import traceback
|
|
import operator
|
|
import numpy as np
|
|
|
|
from fastText import load_model
|
|
from .encode import encode_contract, load_contracts
|
|
from .cache import load_cache, save_cache
|
|
from .similarity import similarity
|
|
|
|
logger = logging.getLogger("Slither-simil")
|
|
|
|
def test(args):
|
|
|
|
try:
|
|
model = args.model
|
|
model = load_model(model)
|
|
filename = args.filename
|
|
contract = args.contract
|
|
fname = args.fname
|
|
solc = args.solc
|
|
infile = args.input
|
|
ext = args.filter
|
|
|
|
if filename is None or contract is None or fname is None or infile is None:
|
|
logger.error('The test mode requires filename, contract, fname and input parameters.')
|
|
sys.exit(-1)
|
|
|
|
irs = encode_contract(filename,solc=solc)
|
|
if len(irs) == 0:
|
|
sys.exit(-1)
|
|
|
|
y = " ".join(irs[(filename,contract,fname)])
|
|
|
|
fvector = model.get_sentence_vector(y)
|
|
cache = load_cache(infile, model, ext=ext, solc=solc)
|
|
#save_cache("cache.npz", cache)
|
|
|
|
r = dict()
|
|
for x,y in cache.items():
|
|
r[x] = similarity(fvector, y)
|
|
|
|
r = sorted(r.items(), key=operator.itemgetter(1), reverse=True)
|
|
for x,score in r[:10]:
|
|
print(x,score)
|
|
|
|
except Exception:
|
|
logger.error('Error in %s' % args.filename)
|
|
logger.error(traceback.format_exc())
|
|
sys.exit(-1)
|
|
|