parent
351696ec92
commit
ab272e754a
@ -1,35 +0,0 @@ |
||||
// SPDX-License-Identifier: MIT |
||||
|
||||
pragma solidity >=0.8.0 <0.9.0; |
||||
|
||||
contract A { |
||||
uint valA; |
||||
|
||||
function setA() public { |
||||
valA = 1; |
||||
} |
||||
} |
||||
|
||||
contract B is A { |
||||
uint valB; |
||||
|
||||
function setB() public { |
||||
valB = 1; |
||||
} |
||||
} |
||||
|
||||
contract C is A { |
||||
uint valC; |
||||
|
||||
function setC() public { |
||||
valC = 1; |
||||
} |
||||
} |
||||
|
||||
contract D is B, C { |
||||
uint valD; |
||||
|
||||
function setD() public { |
||||
valD = 1; |
||||
} |
||||
} |
@ -0,0 +1,476 @@ |
||||
// Sources flattened with hardhat v2.20.0 https://hardhat.org |
||||
// File @openzeppelin/contracts/utils/math/Math.sol@v4.9.5 |
||||
|
||||
// Original license: SPDX_License_Identifier: MIT |
||||
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) |
||||
|
||||
pragma solidity ^0.8.0; |
||||
|
||||
/** |
||||
* @dev Standard math utilities missing in the Solidity language. |
||||
*/ |
||||
library Math { |
||||
enum Rounding { |
||||
Down, // Toward negative infinity |
||||
Up, // Toward infinity |
||||
Zero // Toward zero |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the largest of two numbers. |
||||
*/ |
||||
function max(uint256 a, uint256 b) internal pure returns (uint256) { |
||||
return a > b ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the smallest of two numbers. |
||||
*/ |
||||
function min(uint256 a, uint256 b) internal pure returns (uint256) { |
||||
return a < b ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the average of two numbers. The result is rounded towards |
||||
* zero. |
||||
*/ |
||||
function average(uint256 a, uint256 b) internal pure returns (uint256) { |
||||
// (a + b) / 2 can overflow. |
||||
return (a & b) + (a ^ b) / 2; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the ceiling of the division of two numbers. |
||||
* |
||||
* This differs from standard division with `/` in that it rounds up instead |
||||
* of rounding down. |
||||
*/ |
||||
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { |
||||
// (a + b - 1) / b can overflow on addition, so we distribute. |
||||
return a == 0 ? 0 : (a - 1) / b + 1; |
||||
} |
||||
|
||||
/** |
||||
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 |
||||
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) |
||||
* with further edits by Uniswap Labs also under MIT license. |
||||
*/ |
||||
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { |
||||
unchecked { |
||||
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use |
||||
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 |
||||
// variables such that product = prod1 * 2^256 + prod0. |
||||
uint256 prod0; // Least significant 256 bits of the product |
||||
uint256 prod1; // Most significant 256 bits of the product |
||||
assembly { |
||||
let mm := mulmod(x, y, not(0)) |
||||
prod0 := mul(x, y) |
||||
prod1 := sub(sub(mm, prod0), lt(mm, prod0)) |
||||
} |
||||
|
||||
// Handle non-overflow cases, 256 by 256 division. |
||||
if (prod1 == 0) { |
||||
// Solidity will revert if denominator == 0, unlike the div opcode on its own. |
||||
// The surrounding unchecked block does not change this fact. |
||||
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. |
||||
return prod0 / denominator; |
||||
} |
||||
|
||||
// Make sure the result is less than 2^256. Also prevents denominator == 0. |
||||
require(denominator > prod1, "Math: mulDiv overflow"); |
||||
|
||||
/////////////////////////////////////////////// |
||||
// 512 by 256 division. |
||||
/////////////////////////////////////////////// |
||||
|
||||
// Make division exact by subtracting the remainder from [prod1 prod0]. |
||||
uint256 remainder; |
||||
assembly { |
||||
// Compute remainder using mulmod. |
||||
remainder := mulmod(x, y, denominator) |
||||
|
||||
// Subtract 256 bit number from 512 bit number. |
||||
prod1 := sub(prod1, gt(remainder, prod0)) |
||||
prod0 := sub(prod0, remainder) |
||||
} |
||||
|
||||
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. |
||||
// See https://cs.stackexchange.com/q/138556/92363. |
||||
|
||||
// Does not overflow because the denominator cannot be zero at this stage in the function. |
||||
uint256 twos = denominator & (~denominator + 1); |
||||
assembly { |
||||
// Divide denominator by twos. |
||||
denominator := div(denominator, twos) |
||||
|
||||
// Divide [prod1 prod0] by twos. |
||||
prod0 := div(prod0, twos) |
||||
|
||||
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. |
||||
twos := add(div(sub(0, twos), twos), 1) |
||||
} |
||||
|
||||
// Shift in bits from prod1 into prod0. |
||||
prod0 |= prod1 * twos; |
||||
|
||||
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such |
||||
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for |
||||
// four bits. That is, denominator * inv = 1 mod 2^4. |
||||
uint256 inverse = (3 * denominator) ^ 2; |
||||
|
||||
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works |
||||
// in modular arithmetic, doubling the correct bits in each step. |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^8 |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^16 |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^32 |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^64 |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^128 |
||||
inverse *= 2 - denominator * inverse; // inverse mod 2^256 |
||||
|
||||
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator. |
||||
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is |
||||
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 |
||||
// is no longer required. |
||||
result = prod0 * inverse; |
||||
return result; |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction. |
||||
*/ |
||||
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { |
||||
uint256 result = mulDiv(x, y, denominator); |
||||
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { |
||||
result += 1; |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. |
||||
* |
||||
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). |
||||
*/ |
||||
function sqrt(uint256 a) internal pure returns (uint256) { |
||||
if (a == 0) { |
||||
return 0; |
||||
} |
||||
|
||||
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. |
||||
// |
||||
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have |
||||
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. |
||||
// |
||||
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` |
||||
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` |
||||
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` |
||||
// |
||||
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. |
||||
uint256 result = 1 << (log2(a) >> 1); |
||||
|
||||
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, |
||||
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at |
||||
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision |
||||
// into the expected uint128 result. |
||||
unchecked { |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
result = (result + a / result) >> 1; |
||||
return min(result, a / result); |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @notice Calculates sqrt(a), following the selected rounding direction. |
||||
*/ |
||||
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { |
||||
unchecked { |
||||
uint256 result = sqrt(a); |
||||
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 2, rounded down, of a positive value. |
||||
* Returns 0 if given 0. |
||||
*/ |
||||
function log2(uint256 value) internal pure returns (uint256) { |
||||
uint256 result = 0; |
||||
unchecked { |
||||
if (value >> 128 > 0) { |
||||
value >>= 128; |
||||
result += 128; |
||||
} |
||||
if (value >> 64 > 0) { |
||||
value >>= 64; |
||||
result += 64; |
||||
} |
||||
if (value >> 32 > 0) { |
||||
value >>= 32; |
||||
result += 32; |
||||
} |
||||
if (value >> 16 > 0) { |
||||
value >>= 16; |
||||
result += 16; |
||||
} |
||||
if (value >> 8 > 0) { |
||||
value >>= 8; |
||||
result += 8; |
||||
} |
||||
if (value >> 4 > 0) { |
||||
value >>= 4; |
||||
result += 4; |
||||
} |
||||
if (value >> 2 > 0) { |
||||
value >>= 2; |
||||
result += 2; |
||||
} |
||||
if (value >> 1 > 0) { |
||||
result += 1; |
||||
} |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 2, following the selected rounding direction, of a positive value. |
||||
* Returns 0 if given 0. |
||||
*/ |
||||
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { |
||||
unchecked { |
||||
uint256 result = log2(value); |
||||
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 10, rounded down, of a positive value. |
||||
* Returns 0 if given 0. |
||||
*/ |
||||
function log10(uint256 value) internal pure returns (uint256) { |
||||
uint256 result = 0; |
||||
unchecked { |
||||
if (value >= 10 ** 64) { |
||||
value /= 10 ** 64; |
||||
result += 64; |
||||
} |
||||
if (value >= 10 ** 32) { |
||||
value /= 10 ** 32; |
||||
result += 32; |
||||
} |
||||
if (value >= 10 ** 16) { |
||||
value /= 10 ** 16; |
||||
result += 16; |
||||
} |
||||
if (value >= 10 ** 8) { |
||||
value /= 10 ** 8; |
||||
result += 8; |
||||
} |
||||
if (value >= 10 ** 4) { |
||||
value /= 10 ** 4; |
||||
result += 4; |
||||
} |
||||
if (value >= 10 ** 2) { |
||||
value /= 10 ** 2; |
||||
result += 2; |
||||
} |
||||
if (value >= 10 ** 1) { |
||||
result += 1; |
||||
} |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 10, following the selected rounding direction, of a positive value. |
||||
* Returns 0 if given 0. |
||||
*/ |
||||
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { |
||||
unchecked { |
||||
uint256 result = log10(value); |
||||
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 256, rounded down, of a positive value. |
||||
* Returns 0 if given 0. |
||||
* |
||||
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. |
||||
*/ |
||||
function log256(uint256 value) internal pure returns (uint256) { |
||||
uint256 result = 0; |
||||
unchecked { |
||||
if (value >> 128 > 0) { |
||||
value >>= 128; |
||||
result += 16; |
||||
} |
||||
if (value >> 64 > 0) { |
||||
value >>= 64; |
||||
result += 8; |
||||
} |
||||
if (value >> 32 > 0) { |
||||
value >>= 32; |
||||
result += 4; |
||||
} |
||||
if (value >> 16 > 0) { |
||||
value >>= 16; |
||||
result += 2; |
||||
} |
||||
if (value >> 8 > 0) { |
||||
result += 1; |
||||
} |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
/** |
||||
* @dev Return the log in base 256, following the selected rounding direction, of a positive value. |
||||
* Returns 0 if given 0. |
||||
*/ |
||||
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { |
||||
unchecked { |
||||
uint256 result = log256(value); |
||||
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
// File @openzeppelin/contracts/utils/math/SignedMath.sol@v4.9.5 |
||||
|
||||
// Original license: SPDX_License_Identifier: MIT |
||||
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) |
||||
|
||||
pragma solidity ^0.8.0; |
||||
|
||||
/** |
||||
* @dev Standard signed math utilities missing in the Solidity language. |
||||
*/ |
||||
library SignedMath { |
||||
/** |
||||
* @dev Returns the largest of two signed numbers. |
||||
*/ |
||||
function max(int256 a, int256 b) internal pure returns (int256) { |
||||
return a > b ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the smallest of two signed numbers. |
||||
*/ |
||||
function min(int256 a, int256 b) internal pure returns (int256) { |
||||
return a < b ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the average of two signed numbers without overflow. |
||||
* The result is rounded towards zero. |
||||
*/ |
||||
function average(int256 a, int256 b) internal pure returns (int256) { |
||||
// Formula from the book "Hacker's Delight" |
||||
int256 x = (a & b) + ((a ^ b) >> 1); |
||||
return x + (int256(uint256(x) >> 255) & (a ^ b)); |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns the absolute unsigned value of a signed value. |
||||
*/ |
||||
function abs(int256 n) internal pure returns (uint256) { |
||||
unchecked { |
||||
// must be unchecked in order to support `n = type(int256).min` |
||||
return uint256(n >= 0 ? n : -n); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
// File @openzeppelin/contracts/utils/Strings.sol@v4.9.5 |
||||
|
||||
// Original license: SPDX_License_Identifier: MIT |
||||
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) |
||||
|
||||
pragma solidity ^0.8.0; |
||||
|
||||
|
||||
/** |
||||
* @dev String operations. |
||||
*/ |
||||
library Strings { |
||||
bytes16 private constant _SYMBOLS = "0123456789abcdef"; |
||||
uint8 private constant _ADDRESS_LENGTH = 20; |
||||
|
||||
/** |
||||
* @dev Converts a `uint256` to its ASCII `string` decimal representation. |
||||
*/ |
||||
function toString(uint256 value) internal pure returns (string memory) { |
||||
unchecked { |
||||
uint256 length = Math.log10(value) + 1; |
||||
string memory buffer = new string(length); |
||||
uint256 ptr; |
||||
/// @solidity memory-safe-assembly |
||||
assembly { |
||||
ptr := add(buffer, add(32, length)) |
||||
} |
||||
while (true) { |
||||
ptr--; |
||||
/// @solidity memory-safe-assembly |
||||
assembly { |
||||
mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) |
||||
} |
||||
value /= 10; |
||||
if (value == 0) break; |
||||
} |
||||
return buffer; |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @dev Converts a `int256` to its ASCII `string` decimal representation. |
||||
*/ |
||||
function toString(int256 value) internal pure returns (string memory) { |
||||
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); |
||||
} |
||||
|
||||
/** |
||||
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. |
||||
*/ |
||||
function toHexString(uint256 value) internal pure returns (string memory) { |
||||
unchecked { |
||||
return toHexString(value, Math.log256(value) + 1); |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. |
||||
*/ |
||||
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { |
||||
bytes memory buffer = new bytes(2 * length + 2); |
||||
buffer[0] = "0"; |
||||
buffer[1] = "x"; |
||||
for (uint256 i = 2 * length + 1; i > 1; --i) { |
||||
buffer[i] = _SYMBOLS[value & 0xf]; |
||||
value >>= 4; |
||||
} |
||||
require(value == 0, "Strings: hex length insufficient"); |
||||
return string(buffer); |
||||
} |
||||
|
||||
/** |
||||
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. |
||||
*/ |
||||
function toHexString(address addr) internal pure returns (string memory) { |
||||
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); |
||||
} |
||||
|
||||
/** |
||||
* @dev Returns true if the two strings are equal. |
||||
*/ |
||||
function equal(string memory a, string memory b) internal pure returns (bool) { |
||||
return keccak256(bytes(a)) == keccak256(bytes(b)); |
||||
} |
||||
} |
Loading…
Reference in new issue