chore: Remove catchup sequence logic (#10415)

pull/10419/head
Qwerty5Uiop 4 months ago committed by GitHub
parent bc7f6a7967
commit 314d2e7a5f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 362
      apps/indexer/lib/indexer/block/catchup/sequence.ex
  2. 248
      apps/indexer/test/indexer/block/catchup/sequence_test.exs
  3. 10
      apps/indexer/test/indexer/block/realtime/fetcher_test.exs
  4. 2
      apps/indexer/test/indexer/temporary/uncataloged_token_transfers_test.exs

@ -1,362 +0,0 @@
defmodule Indexer.Block.Catchup.Sequence do
@moduledoc false
use GenServer
alias Indexer.{BoundQueue, Memory}
@enforce_keys ~w(current bound_queue step)a
defstruct current: nil,
bound_queue: %BoundQueue{},
step: nil
@typedoc """
The ranges to stream from the `t:Stream.t/` returned from `build_stream/1`
"""
@type ranges :: [Range.t()]
@typep ranges_option :: {:ranges, ranges}
@typedoc """
The first number in the sequence to start for infinite sequences.
"""
@type first :: integer()
@typep first_option :: {:first, first}
@typedoc """
* `:finite` - only popping ranges from `queue`.
* `:infinite` - generating new ranges from `current` and `step` when `queue` is empty.
"""
@type mode :: :finite | :infinite
@typedoc """
The size of `t:Range.t/0` to construct based on the `t:first_named_argument/0` or its current value when all
`t:prefix/0` ranges and any `t:Range.t/0`s injected with `inject_range/2` are consumed.
"""
@type step :: neg_integer() | pos_integer()
@typep step_named_argument :: {:step, step}
@typep memory_monitor_option :: {:memory_monitor, GenServer.server()}
@type options :: [ranges_option | first_option | memory_monitor_option | step_named_argument]
@typep edge :: :front | :back
@typep range_tuple :: {first :: non_neg_integer(), last :: non_neg_integer()}
@typep t :: %__MODULE__{
bound_queue: BoundQueue.t(range_tuple()),
current: nil | integer(),
step: step()
}
def child_spec([init_arguments]) do
child_spec([init_arguments, []])
end
def child_spec([_init_arguments, _gen_server_options] = start_link_arguments) do
spec = %{
id: __MODULE__,
start: {__MODULE__, :start_link, start_link_arguments},
type: :worker
}
Supervisor.child_spec(spec, [])
end
@doc """
Starts a process for managing a block sequence.
Infinite sequence
Indexer.Block.Catchup.Sequence.start_link(first: 100, step: 10)
Finite sequence
Indexer.Block.Catchup.Sequence.start_link(ranges: [100..0])
"""
@spec start_link(options(), Keyword.t()) :: GenServer.on_start()
def start_link(init_options, gen_server_options \\ []) when is_list(init_options) and is_list(gen_server_options) do
GenServer.start_link(__MODULE__, init_options, gen_server_options)
end
@doc """
Builds an enumerable stream using a sequencer agent.
"""
@spec build_stream(GenServer.server()) :: Enumerable.t()
def build_stream(sequencer) do
Stream.resource(
fn -> sequencer end,
fn seq ->
case pop_front(seq) do
:halt -> {:halt, seq}
range -> {[range], seq}
end
end,
fn seq -> seq end
)
end
@doc """
Changes the mode for the sequence to finite.
"""
@spec cap(GenServer.server()) :: mode
def cap(sequence) do
GenServer.call(sequence, :cap)
end
@doc """
Adds a range of block numbers to the end of the sequence.
"""
@spec push_back(GenServer.server(), Range.t()) :: :ok | {:error, String.t()}
def push_back(sequence, _first.._last = range) do
GenServer.call(sequence, {:push_back, range})
end
@doc """
Adds a range of block numbers to the front of the sequence.
"""
@spec push_front(GenServer.server(), Range.t()) :: :ok | {:error, String.t()}
def push_front(sequence, _first.._last = range) do
GenServer.call(sequence, {:push_front, range})
end
@doc """
Pops the next block range from the sequence.
"""
@spec pop_front(GenServer.server()) :: Range.t() | :halt
def pop_front(sequence) do
GenServer.call(sequence, :pop_front)
end
@impl GenServer
@spec init(options) :: {:ok, t}
def init(options) when is_list(options) do
Process.flag(:trap_exit, true)
shrinkable(options)
with {:ok, %{ranges: ranges, first: first, step: step}} <- validate_options(options),
{:ok, bound_queue} <- push_chunked_ranges(%BoundQueue{}, step, ranges) do
{:ok, %__MODULE__{bound_queue: bound_queue, current: first, step: step}}
else
{:error, reason} ->
{:stop, reason}
end
end
@impl GenServer
@spec handle_call(:cap, GenServer.from(), %__MODULE__{current: nil}) :: {:reply, :finite, %__MODULE__{current: nil}}
@spec handle_call(:cap, GenServer.from(), %__MODULE__{current: integer()}) ::
{:reply, :infinite, %__MODULE__{current: nil}}
def handle_call(:cap, _from, %__MODULE__{current: current} = state) do
mode =
case current do
nil -> :finite
_ -> :infinite
end
{:reply, mode, %__MODULE__{state | current: nil}}
end
@spec handle_call({:push_back, Range.t()}, GenServer.from(), t()) :: {:reply, :ok | {:error, String.t()}, t()}
def handle_call({:push_back, _first.._last = range}, _from, %__MODULE__{bound_queue: bound_queue, step: step} = state) do
case push_chunked_range(bound_queue, step, range) do
{:ok, updated_bound_queue} ->
{:reply, :ok, %__MODULE__{state | bound_queue: updated_bound_queue}}
{:error, _} = error ->
{:reply, error, state}
end
end
@spec handle_call({:push_front, Range.t()}, GenServer.from(), t()) :: {:reply, :ok | {:error, String.t()}, t()}
def handle_call(
{:push_front, _first.._last = range},
_from,
%__MODULE__{bound_queue: bound_queue, step: step} = state
) do
case push_chunked_range(bound_queue, step, range, :front) do
{:ok, updated_bound_queue} ->
{:reply, :ok, %__MODULE__{state | bound_queue: updated_bound_queue}}
{:error, _} = error ->
{:reply, error, state}
end
end
@spec handle_call(:pop_front, GenServer.from(), t()) :: {:reply, Range.t() | :halt, t()}
def handle_call(:pop_front, _from, %__MODULE__{bound_queue: bound_queue, current: current, step: step} = state) do
{reply, new_state} =
case {current, BoundQueue.pop_front(bound_queue)} do
{_, {:ok, {{first, last}, new_bound_queue}}} ->
{first..last, %__MODULE__{state | bound_queue: new_bound_queue}}
{nil, {:error, :empty}} ->
{:halt, %__MODULE__{state | bound_queue: bound_queue}}
{_, {:error, :empty}} ->
case current + step do
new_current ->
last = new_current - 1
{current..last, %__MODULE__{state | current: new_current, bound_queue: bound_queue}}
end
end
{:reply, reply, new_state}
end
@spec handle_call(:shrink, GenServer.from(), t()) :: {:reply, :ok, t()}
def handle_call(:shrink, _from, %__MODULE__{bound_queue: bound_queue} = state) do
{reply, shrunk_state} =
case BoundQueue.shrink(bound_queue) do
{:error, :minimum_size} = error ->
{error, state}
{:ok, shrunk_bound_queue} ->
{:ok, %__MODULE__{state | bound_queue: shrunk_bound_queue}}
end
{:reply, reply, shrunk_state, :hibernate}
end
@spec handle_call(:shrunk?, GenServer.from(), t()) :: {:reply, boolean(), t()}
def handle_call(:shrunk?, _from, %__MODULE__{bound_queue: bound_queue} = state) do
{:reply, BoundQueue.shrunk?(bound_queue), state}
end
def handle_call(:expand, _from, %__MODULE__{bound_queue: bound_queue} = state) do
{:reply, :ok, %{state | bound_queue: BoundQueue.expand(bound_queue)}}
end
@spec push_chunked_range(BoundQueue.t(Range.t()), step, Range.t(), edge()) ::
{:ok, BoundQueue.t(Range.t())} | {:error, reason :: String.t()}
defp push_chunked_range(bound_queue, step, _.._ = range, edge \\ :back)
when is_integer(step) and edge in [:back, :front] do
with {:error, [reason]} <- push_chunked_ranges(bound_queue, step, [range], edge) do
{:error, reason}
end
end
@spec push_chunked_range(BoundQueue.t(Range.t()), step, [Range.t()], edge()) ::
{:ok, BoundQueue.t(Range.t())} | {:error, reasons :: [String.t()]}
defp push_chunked_ranges(bound_queue, step, ranges, edge \\ :back)
when is_integer(step) and is_list(ranges) and edge in [:back, :front] do
reducer =
case edge do
:back -> &BoundQueue.push_back(&2, &1)
:front -> &BoundQueue.push_front(&2, &1)
end
reduce_chunked_ranges(ranges, step, bound_queue, reducer)
end
defp reduce_chunked_ranges(ranges, step, initial, reducer)
when is_list(ranges) and is_integer(step) and step != 0 and is_function(reducer, 2) do
Enum.reduce(ranges, {:ok, initial}, fn
range, {:ok, acc} ->
case reduce_chunked_range(range, step, acc, reducer) do
{:ok, _} = ok ->
ok
{:error, reason} ->
{:error, [reason]}
end
range, {:error, acc_reasons} = acc ->
case reduce_chunked_range(range, step, initial, reducer) do
{:ok, _} -> acc
{:error, reason} -> {:error, [reason | acc_reasons]}
end
end)
end
defp reduce_chunked_range(_.._ = range, step, initial, reducer) do
count = Enum.count(range)
reduce_chunked_range(range, count, step, initial, reducer)
end
defp reduce_chunked_range(first..last = range, _count, step, _initial, _reducer)
when (step < 0 and first < last) or (0 < step and last < first) do
{:error, "Range (#{inspect(range)}) direction is opposite step (#{step}) direction"}
end
defp reduce_chunked_range(first..last, count, step, initial, reducer) when count <= abs(step) do
reducer.({first, last}, initial)
end
defp reduce_chunked_range(first..last, _, step, initial, reducer) do
{sign, comparator} =
if step > 0 do
{1, &Kernel.>=/2}
else
{-1, &Kernel.<=/2}
end
first
|> Stream.iterate(&(&1 + step))
|> Enum.reduce_while(
initial,
&reduce_whiler(&1, &2, %{step: step, sign: sign, comparator: comparator, last: last, reducer: reducer})
)
end
defp reduce_whiler(chunk_first, acc, %{step: step, sign: sign, comparator: comparator, last: last, reducer: reducer}) do
next_chunk_first = chunk_first + step
full_chunk_last = next_chunk_first - sign
{action, chunk_last} =
if comparator.(full_chunk_last, last) do
{:halt, last}
else
{:cont, full_chunk_last}
end
case reducer.({chunk_first, chunk_last}, acc) do
{:ok, reduced} ->
case action do
:halt -> {:halt, {:ok, reduced}}
:cont -> {:cont, reduced}
end
{:error, _} = error ->
{:halt, error}
end
end
defp shrinkable(options) do
case Keyword.get(options, :memory_monitor) do
nil -> :ok
memory_monitor -> Memory.Monitor.shrinkable(memory_monitor)
end
end
defp validate_options(options) do
step = Keyword.fetch!(options, :step)
case {Keyword.fetch(options, :ranges), Keyword.fetch(options, :first)} do
{:error, {:ok, first}} ->
case step do
pos_integer when is_integer(pos_integer) and pos_integer > 0 ->
{:ok, %{ranges: [], first: first, step: step}}
_ ->
{:error, ":step must be a positive integer for infinite sequences"}
end
{{:ok, ranges}, :error} ->
{:ok, %{ranges: ranges, first: nil, step: step}}
{{:ok, _}, {:ok, _}} ->
{:error,
":ranges and :first cannot be set at the same time as :ranges is for :finite mode while :first is for :infinite mode"}
{:error, :error} ->
{:error, "either :ranges or :first must be set"}
end
end
end

@ -1,248 +0,0 @@
defmodule Indexer.Block.Catchup.SequenceTest do
use ExUnit.Case
alias Indexer.Block.Catchup.Sequence
alias Indexer.Memory.Shrinkable
describe "start_link/1" do
test "without :ranges with :first with positive step pops infinitely" do
{:ok, ascending} = Sequence.start_link(first: 5, step: 1)
assert Sequence.pop_front(ascending) == 5..5
assert Sequence.pop_front(ascending) == 6..6
end
test "without :ranges with :first with negative :step is error" do
{child_pid, child_ref} =
spawn_monitor(fn ->
Sequence.start_link(first: 1, step: -1)
Process.sleep(:timer.seconds(5))
end)
assert_receive {:DOWN, ^child_ref, :process, ^child_pid,
":step must be a positive integer for infinite sequences"}
end
test "without :ranges without :first returns error" do
{child_pid, child_ref} =
spawn_monitor(fn ->
Sequence.start_link(step: -1)
Process.sleep(:timer.seconds(5))
end)
assert_receive {:DOWN, ^child_ref, :process, ^child_pid, "either :ranges or :first must be set"}
end
test "with ranges without :first" do
{:ok, pid} = Sequence.start_link(ranges: [1..4], step: 1)
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == 2..2
assert Sequence.pop_front(pid) == 3..3
assert Sequence.pop_front(pid) == 4..4
assert Sequence.pop_front(pid) == :halt
end
test "with :ranges with :first returns error" do
{child_pid, child_ref} =
spawn_monitor(fn ->
Sequence.start_link(ranges: [1..0], first: 1, step: -1)
Process.sleep(:timer.seconds(5))
end)
assert_receive {:DOWN, ^child_ref, :process, ^child_pid,
":ranges and :first cannot be set at the same time" <>
" as :ranges is for :finite mode while :first is for :infinite mode"}
end
test "with 0 first with negative step does not return 0 twice" do
{:ok, pid} = Sequence.start_link(ranges: [1..0], step: -1)
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == 0..0
assert Sequence.pop_front(pid) == :halt
end
# Regression test for https://github.com/poanetwork/blockscout/issues/387
test "ensures Sequence shuts down when parent process dies" do
parent = self()
{child_pid, child_ref} = spawn_monitor(fn -> send(parent, Sequence.start_link(first: 1, step: 1)) end)
assert_receive {:DOWN, ^child_ref, :process, ^child_pid, :normal}
assert_receive {:ok, sequence_pid} when is_pid(sequence_pid)
sequence_ref = Process.monitor(sequence_pid)
# noproc when the sequence has already died by the time monitor is called
assert_receive {:DOWN, ^sequence_ref, :process, ^sequence_pid, status} when status in [:normal, :noproc]
end
end
describe "push_back/2" do
test "with finite mode range is chunked" do
{:ok, pid} = Sequence.start_link(ranges: [1..0], step: -1)
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == 0..0
assert Sequence.push_back(pid, 1..0) == :ok
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == 0..0
assert Sequence.pop_front(pid) == :halt
assert Sequence.pop_front(pid) == :halt
end
test "with finite mode with range in wrong direction returns error" do
{:ok, ascending} = Sequence.start_link(first: 0, step: 1)
assert Sequence.push_back(ascending, 1..0) ==
{:error, "Range (1..0//-1) direction is opposite step (1) direction"}
{:ok, descending} = Sequence.start_link(ranges: [1..0], step: -1)
assert Sequence.push_back(descending, 0..1) == {:error, "Range (0..1) direction is opposite step (-1) direction"}
end
test "with infinite mode range is chunked and is returned prior to calculated ranges" do
{:ok, pid} = Sequence.start_link(first: 5, step: 1)
assert :ok = Sequence.push_back(pid, 3..4)
assert Sequence.pop_front(pid) == 3..3
assert Sequence.pop_front(pid) == 4..4
# infinite sequence takes over
assert Sequence.pop_front(pid) == 5..5
assert Sequence.pop_front(pid) == 6..6
end
test "with size == maximum_size, returns error" do
{:ok, pid} = Sequence.start_link(ranges: [1..0], step: -1)
:ok = Shrinkable.shrink(pid)
# error if currently size == maximum_size
assert {:error, :maximum_size} = Sequence.push_back(pid, 2..2)
assert Sequence.pop_front(pid) == 1..1
# error if range would make sequence exceed maximum size
assert {:error, :maximum_size} = Sequence.push_back(pid, 3..2)
# no error if range makes it under maximum size
assert :ok = Sequence.push_back(pid, 2..2)
assert Sequence.pop_front(pid) == 2..2
assert Sequence.pop_front(pid) == :halt
end
end
describe "push_front/2" do
test "with finite mode range is chunked" do
{:ok, pid} = Sequence.start_link(ranges: [1..0], step: -1)
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == 0..0
assert Sequence.push_front(pid, 1..0) == :ok
assert Sequence.pop_front(pid) == 0..0
assert Sequence.pop_front(pid) == 1..1
assert Sequence.pop_front(pid) == :halt
assert Sequence.pop_front(pid) == :halt
end
test "with finite mode with range in wrong direction returns error" do
{:ok, ascending} = Sequence.start_link(first: 0, step: 1)
assert Sequence.push_front(ascending, 1..0) ==
{:error, "Range (1..0//-1) direction is opposite step (1) direction"}
{:ok, descending} = Sequence.start_link(ranges: [1..0], step: -1)
assert Sequence.push_front(descending, 0..1) == {:error, "Range (0..1) direction is opposite step (-1) direction"}
end
test "with infinite mode range is chunked and is returned prior to calculated ranges" do
{:ok, pid} = Sequence.start_link(first: 5, step: 1)
assert :ok = Sequence.push_front(pid, 3..4)
assert Sequence.pop_front(pid) == 4..4
assert Sequence.pop_front(pid) == 3..3
# infinite sequence takes over
assert Sequence.pop_front(pid) == 5..5
assert Sequence.pop_front(pid) == 6..6
end
test "with size == maximum_size, returns error" do
{:ok, pid} = Sequence.start_link(ranges: [1..0], step: -1)
:ok = Shrinkable.shrink(pid)
# error if currently size == maximum_size
assert {:error, :maximum_size} = Sequence.push_front(pid, 2..2)
assert Sequence.pop_front(pid) == 1..1
# error if range would make sequence exceed maximum size
assert {:error, :maximum_size} = Sequence.push_front(pid, 3..2)
# no error if range makes it under maximum size
assert :ok = Sequence.push_front(pid, 2..2)
assert Sequence.pop_front(pid) == 2..2
assert Sequence.pop_front(pid) == :halt
end
end
describe "cap/1" do
test "returns previous mode" do
{:ok, pid} = Sequence.start_link(first: 5, step: 1)
assert Sequence.cap(pid) == :infinite
assert Sequence.cap(pid) == :finite
end
test "disables infinite mode that uses first and step" do
{:ok, late_capped} = Sequence.start_link(first: 5, step: 1)
assert Sequence.pop_front(late_capped) == 5..5
assert Sequence.pop_front(late_capped) == 6..6
assert Sequence.push_back(late_capped, 5..5) == :ok
assert Sequence.cap(late_capped) == :infinite
assert Sequence.pop_front(late_capped) == 5..5
assert Sequence.pop_front(late_capped) == :halt
{:ok, immediately_capped} = Sequence.start_link(first: 5, step: 1)
assert Sequence.cap(immediately_capped) == :infinite
assert Sequence.pop_front(immediately_capped) == :halt
end
end
describe "pop" do
test "with a non-empty queue in finite mode" do
{:ok, pid} = Sequence.start_link(ranges: [1..4, 6..9], step: 5)
assert Sequence.pop_front(pid) == 1..4
assert Sequence.pop_front(pid) == 6..9
assert Sequence.pop_front(pid) == :halt
assert Sequence.pop_front(pid) == :halt
end
test "with an empty queue in infinite mode returns range from next step from current" do
{:ok, pid} = Sequence.start_link(first: 5, step: 5)
assert 5..9 == Sequence.pop_front(pid)
end
test "with an empty queue in finite mode halts immediately" do
{:ok, pid} = Sequence.start_link(first: 5, step: 5)
:infinite = Sequence.cap(pid)
assert Sequence.pop_front(pid) == :halt
end
end
end

@ -6,7 +6,6 @@ defmodule Indexer.Block.Realtime.FetcherTest do
alias Explorer.Chain alias Explorer.Chain
alias Explorer.Chain.{Address, Transaction, Wei} alias Explorer.Chain.{Address, Transaction, Wei}
alias Indexer.Block.Catchup.Sequence
alias Indexer.Block.Realtime alias Indexer.Block.Realtime
alias Indexer.Fetcher.CoinBalance.Realtime, as: CoinBalanceRealtime alias Indexer.Fetcher.CoinBalance.Realtime, as: CoinBalanceRealtime
alias Indexer.Fetcher.{ContractCode, InternalTransaction, ReplacedTransaction, Token, TokenBalance, UncleBlock} alias Indexer.Fetcher.{ContractCode, InternalTransaction, ReplacedTransaction, Token, TokenBalance, UncleBlock}
@ -48,9 +47,6 @@ defmodule Indexer.Block.Realtime.FetcherTest do
block_fetcher: %Indexer.Block.Fetcher{} = block_fetcher, block_fetcher: %Indexer.Block.Fetcher{} = block_fetcher,
json_rpc_named_arguments: json_rpc_named_arguments json_rpc_named_arguments: json_rpc_named_arguments
} do } do
{:ok, sequence} = Sequence.start_link(ranges: [], step: 2)
Sequence.cap(sequence)
Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments) Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments)
ContractCode.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments) ContractCode.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments)
@ -516,9 +512,6 @@ defmodule Indexer.Block.Realtime.FetcherTest do
} do } do
Application.put_env(:indexer, :fetch_rewards_way, "manual") Application.put_env(:indexer, :fetch_rewards_way, "manual")
{:ok, sequence} = Sequence.start_link(ranges: [], step: 2)
Sequence.cap(sequence)
Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments) Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments)
ContractCode.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments) ContractCode.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments)
@ -746,9 +739,6 @@ defmodule Indexer.Block.Realtime.FetcherTest do
Application.put_env(:indexer, InternalTransaction.Supervisor, disabled?: true) Application.put_env(:indexer, InternalTransaction.Supervisor, disabled?: true)
Application.put_env(:indexer, UncleBlock.Supervisor, disabled?: true) Application.put_env(:indexer, UncleBlock.Supervisor, disabled?: true)
{:ok, sequence} = Sequence.start_link(ranges: [], step: 2)
Sequence.cap(sequence)
start_supervised!({Task.Supervisor, name: Realtime.TaskSupervisor}) start_supervised!({Task.Supervisor, name: Realtime.TaskSupervisor})
Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments) Token.Supervisor.Case.start_supervised!(json_rpc_named_arguments: json_rpc_named_arguments)

@ -1,7 +1,6 @@
defmodule Indexer.Temporary.UncatalogedTokenTransfersTest do defmodule Indexer.Temporary.UncatalogedTokenTransfersTest do
use Explorer.DataCase use Explorer.DataCase
alias Indexer.Block.Catchup.Sequence
alias Indexer.Temporary.UncatalogedTokenTransfers alias Indexer.Temporary.UncatalogedTokenTransfers
@moduletag :capture_log @moduletag :capture_log
@ -63,7 +62,6 @@ defmodule Indexer.Temporary.UncatalogedTokenTransfersTest do
describe "handle_info with :push_front_blocks" do describe "handle_info with :push_front_blocks" do
test "starts a task" do test "starts a task" do
task_sup_pid = start_supervised!({Task.Supervisor, name: UncatalogedTokenTransfers.TaskSupervisor}) task_sup_pid = start_supervised!({Task.Supervisor, name: UncatalogedTokenTransfers.TaskSupervisor})
start_supervised!({Sequence, [[ranges: [], step: -1], [name: :block_catchup_sequencer]]})
state = %{task_ref: nil, block_numbers: [1]} state = %{task_ref: nil, block_numbers: [1]}
assert {:noreply, %{task_ref: task_ref}} = UncatalogedTokenTransfers.handle_info(:push_front_blocks, state) assert {:noreply, %{task_ref: task_ref}} = UncatalogedTokenTransfers.handle_info(:push_front_blocks, state)

Loading…
Cancel
Save