The home for Hyperlane core contracts, sdk packages, and other infrastructure
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
hyperlane-monorepo/rust/README.md

4.5 KiB

Hyperlane Rust implementations

Setup

Note: You should be running >= version 1.69.0 of the rustc compiler, you can see that version with this command and should see similar output:

$ rustup --version
rustup 1.26.0 (5af9b9484 2023-04-05)
info: This is the version for the rustup toolchain manager, not the rustc compiler.
info: The currently active `rustc` version is `rustc 1.69.0 (84c898d65 2023-04-16)`

Running Locally

To run the validator, run:

cargo run --release --bin validator

Or build and then run the binary directly:

cargo build --release --bin validator
./target/release/validator

To run the relayer, run:

cargo run --release --bin relayer

Or build and then run the binary directly:

cargo build --release --bin relayer
./target/release/relayer

Automated E2E Test

To perform an automated e2e test of the agents locally, from within the hyperlane-monorepo/rust directory, run:

cargo run --release --bin run-locally

This will automatically build the agents, start a local node, build and deploy the contracts, and run a relayer and validator. By default, this test will run indefinitely, but can be stopped with ctrl-c.

Building Agent Docker Images

There exists a docker build for the agent binaries. These docker images are used for deploying the agents in a production environment.

cd rust
./build.sh <image_tag>

Deploy Procedure

The contract addresses of each deploy can be found in rust/config. The agents will automatically pull in all configs in this directory.

When agents are deployed to point at a new environment, they cease to point at the old ones. We do not continue to operate off-chain agents on old contract deploys. Contracts not supported by the agents will cease to function (i.e. messages will not be relayed between chains).

Off-chain agents are not automatically re-deployed when new contract deploys are merged. Auto-redeploys will be implemented at some future date.

Useful cargo commands

  • cargo doc --open
    • generate documentation and open it in a web browser
  • cargo build
    • compile the project
  • cargo run --example example
    • run the default executable for the current project
  • cargo test
    • run the tests

Useful cargo extensions

  • tree
    • show the dependency tree. Allows searching for specific packages
    • install: cargo install cargo-tree
    • invoke: cargo tree
  • clippy
    • search the codebase for a large number of lints and bad patterns
    • install: rustup component add clippy
    • invoke: cargo clippy
  • expand
    • expand macros and procedural macros. Show the code generated by the preprocessor
    • useful for debugging #[macros] and macros!()
    • install: cargo install cargo-expand
    • invoke cargo expand path::to::module

Architecture

The on-chain portions of Hyperlane are written in Solidity. The rust portions are exclusively off-chain. Later, there may be on-chain rust for Near/Solana/ Polkadot.

Hyperlane will be managed by a number of small off-chain programs ("agents"). Each of these will have a specific role. We want these roles to be simple, and easily described. Each of these agents will connect to a home chain and any number of replicas. They need to be configured with chain connection details and have access to a reliable node for each chain.

For Ethereum and Celo connections we use ethers-rs. Please see the docs here.

We use the tokio async runtime environment. Please see the docs here.

Repo layout

  • hyperlane-base
    • lowest dependency hyperlane utilities
    • contains shared utilities for building off-chain agents
    • this includes
      • trait implementations for different chains
      • shared configuration file formats
      • basic setup for an off-chain agent
  • hyperlane-core
    • depends on hyperlane-base
    • contains implementations of core primitives
    • this includes
      • traits (interfaces) for the on-chain contracts
      • model implementations of the contracts in rust
      • merkle tree implementations (for provers)
  • chains/hyperlane-ethereum
    • depends on hyperlane-core (and transitively hyperlane-base)
    • interfaces to the ethereum contracts
  • chains/hyperlane-fuel
    • depends on hyperlane-core
    • interfaces to the fuel contracts
  • agents
    • each of the off-chain agents implemented thus far