commit
1323877d61
@ -1,293 +0,0 @@ |
|||||||
/* |
|
||||||
The btctxgen iterates the btc tx history block by block, transaction by transaction. |
|
||||||
|
|
||||||
The btxtxiter provide a simple api called `NextTx` for us to move thru TXs one by one. |
|
||||||
|
|
||||||
Same as txgen, iterate on each shard to generate simulated TXs (GenerateSimulatedTransactions): |
|
||||||
|
|
||||||
1. Get a new btc tx |
|
||||||
2. If it's a coinbase tx, create a corresponding coinbase tx in our blockchain |
|
||||||
3. Otherwise, create a normal TX, which might be cross-shard and might not, depending on whether all the TX inputs belong to the current shard. |
|
||||||
|
|
||||||
Same as txgen, send single shard tx shard by shard, then broadcast cross shard tx. |
|
||||||
|
|
||||||
TODO |
|
||||||
|
|
||||||
Some todos for ricl |
|
||||||
* correct the logic to outputing to one of the input shard, rather than the current shard |
|
||||||
*/ |
|
||||||
package main |
|
||||||
|
|
||||||
import ( |
|
||||||
"flag" |
|
||||||
"fmt" |
|
||||||
"sync" |
|
||||||
"time" |
|
||||||
|
|
||||||
"github.com/simple-rules/harmony-benchmark/blockchain" |
|
||||||
"github.com/simple-rules/harmony-benchmark/client" |
|
||||||
"github.com/simple-rules/harmony-benchmark/client/btctxiter" |
|
||||||
client_config "github.com/simple-rules/harmony-benchmark/client/config" |
|
||||||
"github.com/simple-rules/harmony-benchmark/consensus" |
|
||||||
"github.com/simple-rules/harmony-benchmark/crypto/pki" |
|
||||||
"github.com/simple-rules/harmony-benchmark/log" |
|
||||||
"github.com/simple-rules/harmony-benchmark/node" |
|
||||||
"github.com/simple-rules/harmony-benchmark/p2p" |
|
||||||
proto_node "github.com/simple-rules/harmony-benchmark/proto/node" |
|
||||||
) |
|
||||||
|
|
||||||
type txGenSettings struct { |
|
||||||
crossShard bool |
|
||||||
maxNumTxsPerBatch int |
|
||||||
} |
|
||||||
|
|
||||||
type TXRef struct { |
|
||||||
txID [32]byte |
|
||||||
shardID uint32 |
|
||||||
toAddress [20]byte // we use the same toAddress in btc and hmy
|
|
||||||
} |
|
||||||
|
|
||||||
var ( |
|
||||||
utxoPoolMutex sync.Mutex |
|
||||||
setting txGenSettings |
|
||||||
iter btctxiter.BTCTXIterator |
|
||||||
utxoMapping map[string]TXRef // btcTXID to { txID, shardID }
|
|
||||||
// map from bitcoin address to a int value (the privKey in hmy)
|
|
||||||
addressMapping map[[20]byte]int |
|
||||||
currentInt int |
|
||||||
) |
|
||||||
|
|
||||||
func getHmyInt(btcAddr [20]byte) int { |
|
||||||
var privKey int |
|
||||||
if privKey, ok := addressMapping[btcAddr]; !ok { // If cannot find key
|
|
||||||
privKey = currentInt |
|
||||||
addressMapping[btcAddr] = privKey |
|
||||||
currentInt++ |
|
||||||
} |
|
||||||
return privKey |
|
||||||
} |
|
||||||
|
|
||||||
// Generates at most "maxNumTxs" number of simulated transactions based on the current UtxoPools of all shards.
|
|
||||||
// The transactions are generated by going through the existing utxos and
|
|
||||||
// randomly select a subset of them as the input for each new transaction. The output
|
|
||||||
// address of the new transaction are randomly selected from [0 - N), where N is the total number of fake addresses.
|
|
||||||
//
|
|
||||||
// When crossShard=true, besides the selected utxo input, select another valid utxo as input from the same address in a second shard.
|
|
||||||
// Similarly, generate another utxo output in that second shard.
|
|
||||||
//
|
|
||||||
// NOTE: the genesis block should contain N coinbase transactions which add
|
|
||||||
// token (1000) to each address in [0 - N). See node.AddTestingAddresses()
|
|
||||||
//
|
|
||||||
// Params:
|
|
||||||
// shardID - the shardID for current shard
|
|
||||||
// dataNodes - nodes containing utxopools of all shards
|
|
||||||
// Returns:
|
|
||||||
// all single-shard txs
|
|
||||||
// all cross-shard txs
|
|
||||||
func generateSimulatedTransactions(shardID int, dataNodes []*node.Node) ([]*blockchain.Transaction, []*blockchain.Transaction) { |
|
||||||
/* |
|
||||||
UTXO map structure: |
|
||||||
{ |
|
||||||
address: { |
|
||||||
txID: { |
|
||||||
outputIndex: value |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
*/ |
|
||||||
|
|
||||||
utxoPoolMutex.Lock() |
|
||||||
txs := []*blockchain.Transaction{} |
|
||||||
crossTxs := []*blockchain.Transaction{} |
|
||||||
|
|
||||||
nodeShardID := dataNodes[shardID].Consensus.ShardID |
|
||||||
cnt := 0 |
|
||||||
|
|
||||||
LOOP: |
|
||||||
for { |
|
||||||
btcTx := iter.NextTx() |
|
||||||
if btcTx == nil { |
|
||||||
log.Error("Failed to parse tx", "height", iter.GetBlockIndex()) |
|
||||||
} |
|
||||||
tx := blockchain.Transaction{} |
|
||||||
isCrossShardTx := false |
|
||||||
|
|
||||||
if btctxiter.IsCoinBaseTx(btcTx) { |
|
||||||
// ricl: coinbase tx should just have one txo
|
|
||||||
btcTXO := btcTx.Vout[0] |
|
||||||
btcTXOAddr := btcTXO.ScriptPubKey.Addresses[0] |
|
||||||
var toAddress [20]byte |
|
||||||
copy(toAddress[:], btcTXOAddr) // TODO(ricl): string to [20]byte
|
|
||||||
hmyInt := getHmyInt(toAddress) |
|
||||||
tx = *blockchain.NewCoinbaseTX(pki.GetAddressFromInt(hmyInt), "", nodeShardID) |
|
||||||
|
|
||||||
utxoMapping[btcTx.Hash] = TXRef{tx.ID, nodeShardID, toAddress} |
|
||||||
} else { |
|
||||||
var btcFromAddresses [][20]byte |
|
||||||
for _, btcTXI := range btcTx.Vin { |
|
||||||
btcTXIDStr := btcTXI.Txid |
|
||||||
txRef := utxoMapping[btcTXIDStr] // find the corresponding harmony tx info
|
|
||||||
if txRef.shardID != nodeShardID { |
|
||||||
isCrossShardTx = true |
|
||||||
} |
|
||||||
tx.TxInput = append(tx.TxInput, *blockchain.NewTXInput(blockchain.NewOutPoint(&txRef.txID, btcTXI.Vout), [20]byte{}, txRef.shardID)) |
|
||||||
// Add the from address to array, so that we can later use it to sign the tx.
|
|
||||||
btcFromAddresses = append(btcFromAddresses, txRef.toAddress) |
|
||||||
} |
|
||||||
for _, btcTXO := range btcTx.Vout { |
|
||||||
for _, btcTXOAddr := range btcTXO.ScriptPubKey.Addresses { |
|
||||||
var toAddress [20]byte |
|
||||||
copy(toAddress[:], btcTXOAddr) //TODO(ricl): string to [20]byte
|
|
||||||
txo := blockchain.TXOutput{Amount: int(btcTXO.Value), Address: toAddress, ShardID: nodeShardID} |
|
||||||
tx.TxOutput = append(tx.TxOutput, txo) |
|
||||||
utxoMapping[btcTx.Txid] = TXRef{tx.ID, nodeShardID, toAddress} |
|
||||||
} |
|
||||||
} |
|
||||||
// get private key and sign the tx
|
|
||||||
for _, btcFromAddress := range btcFromAddresses { |
|
||||||
hmyInt := getHmyInt(btcFromAddress) |
|
||||||
tx.SetID() // TODO(RJ): figure out the correct way to set Tx ID.
|
|
||||||
tx.Sign(pki.GetPrivateKeyScalarFromInt(hmyInt)) |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
if isCrossShardTx { |
|
||||||
crossTxs = append(crossTxs, &tx) |
|
||||||
} else { |
|
||||||
txs = append(txs, &tx) |
|
||||||
} |
|
||||||
// log.Debug("[Generator] transformed btc tx", "block height", iter.GetBlockIndex(), "block tx count", iter.GetBlock().TxCount, "block tx cnt", len(iter.GetBlock().Txs), "txi", len(tx.TxInput), "txo", len(tx.TxOutput), "txCount", cnt)
|
|
||||||
cnt++ |
|
||||||
if cnt >= setting.maxNumTxsPerBatch { |
|
||||||
break LOOP |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
utxoPoolMutex.Unlock() |
|
||||||
|
|
||||||
log.Debug("[Generator] generated transations", "single-shard", len(txs), "cross-shard", len(crossTxs)) |
|
||||||
return txs, crossTxs |
|
||||||
} |
|
||||||
|
|
||||||
func initClient(clientNode *node.Node, clientPort string, shardIDLeaderMap *map[uint32]p2p.Peer, nodes *[]*node.Node) { |
|
||||||
if clientPort == "" { |
|
||||||
return |
|
||||||
} |
|
||||||
|
|
||||||
clientNode.Client = client.NewClient(shardIDLeaderMap) |
|
||||||
|
|
||||||
// This func is used to update the client's utxopool when new blocks are received from the leaders
|
|
||||||
updateBlocksFunc := func(blocks []*blockchain.Block) { |
|
||||||
log.Debug("Received new block from leader", "len", len(blocks)) |
|
||||||
for _, block := range blocks { |
|
||||||
for _, node := range *nodes { |
|
||||||
if node.Consensus.ShardID == block.ShardID { |
|
||||||
log.Debug("Adding block from leader", "shardID", block.ShardID) |
|
||||||
// Add it to blockchain
|
|
||||||
utxoPoolMutex.Lock() |
|
||||||
node.AddNewBlock(block) |
|
||||||
utxoPoolMutex.Unlock() |
|
||||||
} else { |
|
||||||
continue |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
clientNode.Client.UpdateBlocks = updateBlocksFunc |
|
||||||
|
|
||||||
// Start the client server to listen to leader's message
|
|
||||||
go func() { |
|
||||||
clientNode.StartServer(clientPort) |
|
||||||
}() |
|
||||||
} |
|
||||||
|
|
||||||
func main() { |
|
||||||
configFile := flag.String("config_file", "local_config.txt", "file containing all ip addresses and config") |
|
||||||
maxNumTxsPerBatch := flag.Int("max_num_txs_per_batch", 10000, "number of transactions to send per message") |
|
||||||
logFolder := flag.String("log_folder", "latest", "the folder collecting the logs of this execution") |
|
||||||
flag.Parse() |
|
||||||
|
|
||||||
// Read the configs
|
|
||||||
config := client_config.NewConfig() |
|
||||||
config.ReadConfigFile(*configFile) |
|
||||||
shardIDLeaderMap := config.GetShardIDToLeaderMap() |
|
||||||
|
|
||||||
// Do cross shard tx if there are more than one shard
|
|
||||||
setting.crossShard = len(shardIDLeaderMap) > 1 |
|
||||||
setting.maxNumTxsPerBatch = *maxNumTxsPerBatch |
|
||||||
|
|
||||||
// TODO(Richard): refactor this chuck to a single method
|
|
||||||
// Setup a logger to stdout and log file.
|
|
||||||
logFileName := fmt.Sprintf("./%v/txgen.log", *logFolder) |
|
||||||
h := log.MultiHandler( |
|
||||||
log.StdoutHandler, |
|
||||||
log.Must.FileHandler(logFileName, log.LogfmtFormat()), // Log to file
|
|
||||||
// log.Must.NetHandler("tcp", ":3000", log.JSONFormat()) // Log to remote
|
|
||||||
) |
|
||||||
log.Root().SetHandler(h) |
|
||||||
|
|
||||||
iter.Init() |
|
||||||
utxoMapping = make(map[string]TXRef) |
|
||||||
addressMapping = make(map[[20]byte]int) |
|
||||||
|
|
||||||
currentInt = 1 // start from address 1
|
|
||||||
// Nodes containing utxopools to mirror the shards' data in the network
|
|
||||||
nodes := []*node.Node{} |
|
||||||
for shardID, _ := range shardIDLeaderMap { |
|
||||||
node := node.New(&consensus.Consensus{ShardID: shardID}, nil) |
|
||||||
// Assign many fake addresses so we have enough address to play with at first
|
|
||||||
node.AddTestingAddresses(10000) |
|
||||||
nodes = append(nodes, node) |
|
||||||
} |
|
||||||
|
|
||||||
// Client/txgenerator server node setup
|
|
||||||
clientPort := config.GetClientPort() |
|
||||||
consensusObj := consensus.NewConsensus("0", clientPort, "0", nil, p2p.Peer{}) |
|
||||||
clientNode := node.New(consensusObj, nil) |
|
||||||
|
|
||||||
initClient(clientNode, clientPort, &shardIDLeaderMap, &nodes) |
|
||||||
|
|
||||||
// Transaction generation process
|
|
||||||
time.Sleep(3 * time.Second) // wait for nodes to be ready
|
|
||||||
|
|
||||||
leaders := []p2p.Peer{} |
|
||||||
for _, leader := range shardIDLeaderMap { |
|
||||||
leaders = append(leaders, leader) |
|
||||||
} |
|
||||||
|
|
||||||
for { |
|
||||||
allCrossTxs := []*blockchain.Transaction{} |
|
||||||
// Generate simulated transactions
|
|
||||||
for shardID, leader := range shardIDLeaderMap { |
|
||||||
txs, crossTxs := generateSimulatedTransactions(int(shardID), nodes) |
|
||||||
allCrossTxs = append(allCrossTxs, crossTxs...) |
|
||||||
|
|
||||||
log.Debug("[Generator] Sending single-shard txs ...", "leader", leader, "numTxs", len(txs), "numCrossTxs", len(crossTxs), "block height", iter.GetBlockIndex()) |
|
||||||
msg := proto_node.ConstructTransactionListMessage(txs) |
|
||||||
p2p.SendMessage(leader, msg) |
|
||||||
// Note cross shard txs are later sent in batch
|
|
||||||
} |
|
||||||
|
|
||||||
if len(allCrossTxs) > 0 { |
|
||||||
log.Debug("[Generator] Broadcasting cross-shard txs ...", "allCrossTxs", len(allCrossTxs)) |
|
||||||
msg := proto_node.ConstructTransactionListMessage(allCrossTxs) |
|
||||||
p2p.BroadcastMessage(leaders, msg) |
|
||||||
|
|
||||||
// Put cross shard tx into a pending list waiting for proofs from leaders
|
|
||||||
if clientPort != "" { |
|
||||||
clientNode.Client.PendingCrossTxsMutex.Lock() |
|
||||||
for _, tx := range allCrossTxs { |
|
||||||
clientNode.Client.PendingCrossTxs[tx.ID] = tx |
|
||||||
} |
|
||||||
clientNode.Client.PendingCrossTxsMutex.Unlock() |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
time.Sleep(500 * time.Millisecond) // Send a batch of transactions periodically
|
|
||||||
} |
|
||||||
|
|
||||||
// Send a stop message to stop the nodes at the end
|
|
||||||
msg := proto_node.ConstructStopMessage() |
|
||||||
peers := append(config.GetValidators(), leaders...) |
|
||||||
p2p.BroadcastMessage(peers, msg) |
|
||||||
} |
|
@ -1,111 +0,0 @@ |
|||||||
// Uses btcd node.
|
|
||||||
// Use `GetBlockVerboseTx` to get block and tx at once.
|
|
||||||
// This way is faster
|
|
||||||
|
|
||||||
package btctxiter |
|
||||||
|
|
||||||
import ( |
|
||||||
"io/ioutil" |
|
||||||
"log" |
|
||||||
"path/filepath" |
|
||||||
|
|
||||||
"github.com/btcsuite/btcd/btcjson" |
|
||||||
"github.com/btcsuite/btcd/rpcclient" |
|
||||||
"github.com/btcsuite/btcutil" |
|
||||||
) |
|
||||||
|
|
||||||
// BTCTXIterator is a btc transaction iterator.
|
|
||||||
type BTCTXIterator struct { |
|
||||||
blockIndex int64 |
|
||||||
block *btcjson.GetBlockVerboseResult |
|
||||||
txIndex int |
|
||||||
tx *btcjson.TxRawResult |
|
||||||
client *rpcclient.Client |
|
||||||
} |
|
||||||
|
|
||||||
// Init is an init function of BTCTXIterator.
|
|
||||||
func (iter *BTCTXIterator) Init() { |
|
||||||
btcdHomeDir := btcutil.AppDataDir("btcd", false) |
|
||||||
certs, err := ioutil.ReadFile(filepath.Join(btcdHomeDir, "rpc.cert")) |
|
||||||
if err != nil { |
|
||||||
log.Fatal(err) |
|
||||||
} |
|
||||||
connCfg := &rpcclient.ConnConfig{ |
|
||||||
Host: "localhost:8334", // This goes to btcd
|
|
||||||
Endpoint: "ws", |
|
||||||
User: "", |
|
||||||
Pass: "", |
|
||||||
Certificates: certs, |
|
||||||
} |
|
||||||
iter.client, err = rpcclient.New(connCfg, nil) |
|
||||||
if err != nil { |
|
||||||
log.Fatal(err) |
|
||||||
} |
|
||||||
iter.blockIndex = 0 // the genesis block cannot retrieved. Skip it intentionally.
|
|
||||||
iter.block = nil |
|
||||||
iter.nextBlock() |
|
||||||
// defer iter.client.Shutdown()
|
|
||||||
} |
|
||||||
|
|
||||||
// NextTx is to move to the next transaction.
|
|
||||||
func (iter *BTCTXIterator) NextTx() *btcjson.TxRawResult { |
|
||||||
iter.txIndex++ |
|
||||||
if iter.txIndex >= len(iter.block.RawTx) { |
|
||||||
iter.nextBlock() |
|
||||||
iter.txIndex++ |
|
||||||
} |
|
||||||
iter.tx = &iter.block.RawTx[iter.txIndex] |
|
||||||
// log.Println(iter.blockIndex, iter.txIndex, hashes[iter.txIndex])
|
|
||||||
return iter.tx |
|
||||||
} |
|
||||||
|
|
||||||
// GetBlockIndex gets the index/height of the current block
|
|
||||||
func (iter *BTCTXIterator) GetBlockIndex() int64 { |
|
||||||
return iter.blockIndex |
|
||||||
} |
|
||||||
|
|
||||||
// GetBlock gets the current block
|
|
||||||
func (iter *BTCTXIterator) GetBlock() *btcjson.GetBlockVerboseResult { |
|
||||||
return iter.block |
|
||||||
} |
|
||||||
|
|
||||||
// GetTxIndex gets the index of the current transaction
|
|
||||||
func (iter *BTCTXIterator) GetTxIndex() int { |
|
||||||
return iter.txIndex |
|
||||||
} |
|
||||||
|
|
||||||
// GetTx gets the current transaction
|
|
||||||
func (iter *BTCTXIterator) GetTx() *btcjson.TxRawResult { |
|
||||||
return iter.tx |
|
||||||
} |
|
||||||
|
|
||||||
func (iter *BTCTXIterator) resetTx() { |
|
||||||
iter.txIndex = -1 |
|
||||||
iter.tx = nil |
|
||||||
} |
|
||||||
|
|
||||||
// Move to the next block
|
|
||||||
func (iter *BTCTXIterator) nextBlock() *btcjson.GetBlockVerboseResult { |
|
||||||
iter.blockIndex++ |
|
||||||
hash, err := iter.client.GetBlockHash(iter.blockIndex) |
|
||||||
if err != nil { |
|
||||||
log.Panic("Failed to get block hash at", iter.blockIndex, err) |
|
||||||
} |
|
||||||
iter.block, err = iter.client.GetBlockVerboseTx(hash) |
|
||||||
if err != nil { |
|
||||||
log.Panic("Failed to get block", iter.blockIndex, err) |
|
||||||
} |
|
||||||
iter.resetTx() |
|
||||||
|
|
||||||
return iter.block |
|
||||||
} |
|
||||||
|
|
||||||
// IsCoinBaseTx returns true if tx is a coinbase tx.
|
|
||||||
func IsCoinBaseTx(tx *btcjson.TxRawResult) bool { |
|
||||||
// A coin base must only have one transaction input.
|
|
||||||
if len(tx.Vin) != 1 { |
|
||||||
return false |
|
||||||
} |
|
||||||
|
|
||||||
return tx.Vin[0].IsCoinBase() |
|
||||||
} |
|
@ -1,21 +0,0 @@ |
|||||||
MIT License |
|
||||||
|
|
||||||
Copyright (c) 2018 Bas Westerbaan |
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
||||||
of this software and associated documentation files (the "Software"), to deal |
|
||||||
in the Software without restriction, including without limitation the rights |
|
||||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
||||||
copies of the Software, and to permit persons to whom the Software is |
|
||||||
furnished to do so, subject to the following conditions: |
|
||||||
|
|
||||||
The above copyright notice and this permission notice shall be included in all |
|
||||||
copies or substantial portions of the Software. |
|
||||||
|
|
||||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
||||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
||||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
||||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
||||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
||||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
||||||
SOFTWARE. |
|
@ -1,57 +0,0 @@ |
|||||||
go-pow |
|
||||||
====== |
|
||||||
|
|
||||||
`go-pow` is a simple Go package to add (asymmetric) *Proof of Work* to your service. |
|
||||||
|
|
||||||
To create a Proof-of-Work request (with difficulty 5), use `pow.NewRequest`: |
|
||||||
|
|
||||||
```go |
|
||||||
req := pow.NewRequest(5, someRandomNonce) |
|
||||||
``` |
|
||||||
|
|
||||||
This returns a string like `sha2bday-5-c29tZSByYW5kb20gbm9uY2U`, |
|
||||||
which can be passed on to the client. |
|
||||||
The client fulfils the proof of work by running `pow.Fulfil`: |
|
||||||
|
|
||||||
```go |
|
||||||
proof, _ := pow.Fulfil(req, []byte("some bound data")) |
|
||||||
``` |
|
||||||
|
|
||||||
The client returns the proof (in this case `AAAAAAAAAAMAAAAAAAAADgAAAAAAAAAb`) |
|
||||||
to the server, which can check it is indeed a valid proof of work, by running: |
|
||||||
|
|
||||||
|
|
||||||
``` go |
|
||||||
ok, _ := pow.Check(req, proof, []byte("some bound data")) |
|
||||||
``` |
|
||||||
|
|
||||||
Notes |
|
||||||
----- |
|
||||||
1. There should be at least sufficient randomness in either the `nonce` passed to |
|
||||||
`NewRequest` or the `data` passed to `Fulfil` and `Check`. |
|
||||||
Thus it is fine to use the same bound `data` for every client, if every client |
|
||||||
get a different `nonce` in its proof-of-work request. |
|
||||||
It is also fine to use the same `nonce` in the proof-of-work request, |
|
||||||
if every client is (by the encapsulating protocol) forced to use |
|
||||||
different bound `data`. |
|
||||||
2. The work to fulfil a request scales exponentially in the difficulty parameter. |
|
||||||
The work to check it proof is correct remains constant: |
|
||||||
|
|
||||||
``` |
|
||||||
Check on Difficulty=5 500000 2544 ns/op |
|
||||||
Check on Difficulty=10 500000 2561 ns/op |
|
||||||
Check on Difficulty=15 500000 2549 ns/op |
|
||||||
Check on Difficulty=20 500000 2525 ns/op |
|
||||||
Fulfil on Difficulty=5 100000 15725 ns/op |
|
||||||
Fulfil on Difficulty=10 30000 46808 ns/op |
|
||||||
Fulfil on Difficulty=15 2000 955606 ns/op |
|
||||||
Fulfil on Difficulty=20 200 6887722 ns/op |
|
||||||
``` |
|
||||||
|
|
||||||
To do |
|
||||||
----- |
|
||||||
|
|
||||||
- Support for [equihash](https://www.cryptolux.org/index.php/Equihash) would be nice. |
|
||||||
- Port to Python, Java, Javascript, ... |
|
||||||
- Parallelize. |
|
||||||
|
|
@ -1,128 +0,0 @@ |
|||||||
// Create and fulfill proof of work requests.
|
|
||||||
package pow |
|
||||||
|
|
||||||
import ( |
|
||||||
"encoding/base64" |
|
||||||
"fmt" |
|
||||||
"strconv" |
|
||||||
"strings" |
|
||||||
) |
|
||||||
|
|
||||||
type Algorithm string |
|
||||||
|
|
||||||
const ( |
|
||||||
Sha2BDay Algorithm = "sha2bday" |
|
||||||
) |
|
||||||
|
|
||||||
// Represents a proof-of-work request.
|
|
||||||
type Request struct { |
|
||||||
|
|
||||||
// The requested algorithm
|
|
||||||
Alg Algorithm |
|
||||||
|
|
||||||
// The requested difficulty
|
|
||||||
Difficulty uint32 |
|
||||||
|
|
||||||
// Nonce to diversify the request
|
|
||||||
Nonce []byte |
|
||||||
} |
|
||||||
|
|
||||||
// Represents a completed proof-of-work
|
|
||||||
type Proof struct { |
|
||||||
buf []byte |
|
||||||
} |
|
||||||
|
|
||||||
// Convenience function to create a new sha3bday proof-of-work request
|
|
||||||
// as a string
|
|
||||||
func NewRequest(difficulty uint32, nonce []byte) string { |
|
||||||
req := Request{ |
|
||||||
Difficulty: difficulty, |
|
||||||
Nonce: nonce, |
|
||||||
Alg: Sha2BDay, |
|
||||||
} |
|
||||||
s, _ := req.MarshalText() |
|
||||||
return string(s) |
|
||||||
} |
|
||||||
|
|
||||||
func (proof Proof) MarshalText() ([]byte, error) { |
|
||||||
return []byte(base64.RawStdEncoding.EncodeToString(proof.buf)), nil |
|
||||||
} |
|
||||||
|
|
||||||
func (proof *Proof) UnmarshalText(buf []byte) error { |
|
||||||
var err error |
|
||||||
proof.buf, err = base64.RawStdEncoding.DecodeString(string(buf)) |
|
||||||
return err |
|
||||||
} |
|
||||||
|
|
||||||
func (req Request) MarshalText() ([]byte, error) { |
|
||||||
return []byte(fmt.Sprintf("%s-%d-%s", |
|
||||||
req.Alg, |
|
||||||
req.Difficulty, |
|
||||||
string(base64.RawStdEncoding.EncodeToString(req.Nonce)))), nil |
|
||||||
} |
|
||||||
|
|
||||||
func (req *Request) UnmarshalText(buf []byte) error { |
|
||||||
bits := strings.SplitN(string(buf), "-", 3) |
|
||||||
if len(bits) != 3 { |
|
||||||
return fmt.Errorf("There should be two dashes in a PoW request") |
|
||||||
} |
|
||||||
alg := Algorithm(bits[0]) |
|
||||||
if alg != Sha2BDay { |
|
||||||
return fmt.Errorf("%s: unsupported algorithm", bits[0]) |
|
||||||
} |
|
||||||
req.Alg = alg |
|
||||||
diff, err := strconv.Atoi(bits[1]) |
|
||||||
if err != nil { |
|
||||||
return err |
|
||||||
} |
|
||||||
req.Difficulty = uint32(diff) |
|
||||||
req.Nonce, err = base64.RawStdEncoding.DecodeString(bits[2]) |
|
||||||
return err |
|
||||||
} |
|
||||||
|
|
||||||
// Convenience function to check whether a proof of work is fulfilled
|
|
||||||
func Check(request, proof string, data []byte) (bool, error) { |
|
||||||
var req Request |
|
||||||
var prf Proof |
|
||||||
err := req.UnmarshalText([]byte(request)) |
|
||||||
if err != nil { |
|
||||||
return false, err |
|
||||||
} |
|
||||||
err = prf.UnmarshalText([]byte(proof)) |
|
||||||
if err != nil { |
|
||||||
return false, err |
|
||||||
} |
|
||||||
return prf.Check(req, data), nil |
|
||||||
} |
|
||||||
|
|
||||||
// Fulfil the proof-of-work request.
|
|
||||||
func (req *Request) Fulfil(data []byte) Proof { |
|
||||||
switch req.Alg { |
|
||||||
case Sha2BDay: |
|
||||||
return Proof{fulfilSha2BDay(req.Nonce, req.Difficulty, data)} |
|
||||||
default: |
|
||||||
panic("No such algorithm") |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// Convenience function to fulfil the proof of work request
|
|
||||||
func Fulfil(request string, data []byte) (string, error) { |
|
||||||
var req Request |
|
||||||
err := req.UnmarshalText([]byte(request)) |
|
||||||
if err != nil { |
|
||||||
return "", err |
|
||||||
} |
|
||||||
proof := req.Fulfil(data) |
|
||||||
s, _ := proof.MarshalText() |
|
||||||
return string(s), nil |
|
||||||
} |
|
||||||
|
|
||||||
// Check whether the proof is ok
|
|
||||||
func (proof *Proof) Check(req Request, data []byte) bool { |
|
||||||
switch req.Alg { |
|
||||||
case Sha2BDay: |
|
||||||
return checkSha2BDay(proof.buf, req.Nonce, data, req.Difficulty) |
|
||||||
default: |
|
||||||
panic("No such algorithm") |
|
||||||
} |
|
||||||
} |
|
@ -1,56 +0,0 @@ |
|||||||
package pow |
|
||||||
|
|
||||||
import ( |
|
||||||
"testing" |
|
||||||
) |
|
||||||
|
|
||||||
func TestSha2BDay(t *testing.T) { |
|
||||||
nonce := []byte{1, 2, 3, 4, 5} |
|
||||||
data := []byte{2, 2, 3, 4, 5} |
|
||||||
r := NewRequest(5, nonce) |
|
||||||
proof, err := Fulfil(r, data) |
|
||||||
if err != nil { |
|
||||||
t.Fatalf("Fulfil: %v", err) |
|
||||||
} |
|
||||||
ok, err := Check(r, proof, data) |
|
||||||
if err != nil { |
|
||||||
t.Fatalf("Check: %v", err) |
|
||||||
} |
|
||||||
if !ok { |
|
||||||
t.Fatalf("Proof of work should be ok") |
|
||||||
} |
|
||||||
ok, err = Check(r, proof, nonce) |
|
||||||
if err != nil { |
|
||||||
t.Fatalf("Check: %v", err) |
|
||||||
} |
|
||||||
if ok { |
|
||||||
t.Fatalf("Proof of work should not be ok") |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
func BenchmarkCheck5(b *testing.B) { benchmarkCheck(5, b) } |
|
||||||
func BenchmarkCheck10(b *testing.B) { benchmarkCheck(10, b) } |
|
||||||
func BenchmarkCheck15(b *testing.B) { benchmarkCheck(15, b) } |
|
||||||
func BenchmarkCheck20(b *testing.B) { benchmarkCheck(20, b) } |
|
||||||
|
|
||||||
func benchmarkCheck(diff uint32, b *testing.B) { |
|
||||||
req := NewRequest(diff, []byte{1, 2, 3, 4, 5}) |
|
||||||
prf, _ := Fulfil(req, []byte{6, 7, 8, 9}) |
|
||||||
b.ResetTimer() |
|
||||||
for n := 0; n < b.N; n++ { |
|
||||||
Check(req, prf, []byte{6, 7, 8, 9}) |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
func BenchmarkFulfil5(b *testing.B) { benchmarkFulfil(5, b) } |
|
||||||
func BenchmarkFulfil10(b *testing.B) { benchmarkFulfil(10, b) } |
|
||||||
func BenchmarkFulfil15(b *testing.B) { benchmarkFulfil(15, b) } |
|
||||||
func BenchmarkFulfil20(b *testing.B) { benchmarkFulfil(20, b) } |
|
||||||
|
|
||||||
func benchmarkFulfil(diff uint32, b *testing.B) { |
|
||||||
req := NewRequest(diff, []byte{1, 2, 3, 4, 5}) |
|
||||||
b.ResetTimer() |
|
||||||
for n := 0; n < b.N; n++ { |
|
||||||
Fulfil(req, []byte{6, 7, 8, 9}) |
|
||||||
} |
|
||||||
} |
|
@ -1,25 +0,0 @@ |
|||||||
package pow_test |
|
||||||
|
|
||||||
import ( |
|
||||||
"fmt" // imported as pow
|
|
||||||
|
|
||||||
"github.com/simple-rules/harmony-benchmark/pow" |
|
||||||
) |
|
||||||
|
|
||||||
func Example() { |
|
||||||
// Create a proof of work request with difficulty 5
|
|
||||||
req := pow.NewRequest(5, []byte("some random nonce")) |
|
||||||
fmt.Printf("req: %s\n", req) |
|
||||||
|
|
||||||
// Fulfil the proof of work
|
|
||||||
proof, _ := pow.Fulfil(req, []byte("some bound data")) |
|
||||||
fmt.Printf("proof: %s\n", proof) |
|
||||||
|
|
||||||
// Check if the proof is correct
|
|
||||||
ok, _ := pow.Check(req, proof, []byte("some bound data")) |
|
||||||
fmt.Printf("check: %v", ok) |
|
||||||
|
|
||||||
// Output: req: sha2bday-5-c29tZSByYW5kb20gbm9uY2U
|
|
||||||
// proof: AAAAAAAAAAMAAAAAAAAADgAAAAAAAAAb
|
|
||||||
// check: true
|
|
||||||
} |
|
@ -1,78 +0,0 @@ |
|||||||
package pow |
|
||||||
|
|
||||||
import ( |
|
||||||
"bytes" |
|
||||||
"crypto/sha256" |
|
||||||
"encoding/binary" |
|
||||||
) |
|
||||||
|
|
||||||
func checkSha2BDay(proof []byte, nonce, data []byte, diff uint32) bool { |
|
||||||
if len(proof) != 24 { |
|
||||||
return false |
|
||||||
} |
|
||||||
prefix1 := proof[:8] |
|
||||||
prefix2 := proof[8:16] |
|
||||||
prefix3 := proof[16:] |
|
||||||
if bytes.Equal(prefix1, prefix2) || bytes.Equal(prefix2, prefix3) || |
|
||||||
bytes.Equal(prefix1, prefix3) { |
|
||||||
return false |
|
||||||
} |
|
||||||
resBuf := make([]byte, 32) |
|
||||||
h := sha256.New() |
|
||||||
h.Write(prefix1) |
|
||||||
h.Write(data) |
|
||||||
h.Write(nonce) |
|
||||||
h.Sum(resBuf[:0]) |
|
||||||
res1 := binary.BigEndian.Uint64(resBuf) & ((1 << diff) - 1) |
|
||||||
h.Reset() |
|
||||||
h.Write(prefix2) |
|
||||||
h.Write(data) |
|
||||||
h.Write(nonce) |
|
||||||
h.Sum(resBuf[:0]) |
|
||||||
res2 := binary.BigEndian.Uint64(resBuf) & ((1 << diff) - 1) |
|
||||||
h.Reset() |
|
||||||
h.Write(prefix3) |
|
||||||
h.Write(data) |
|
||||||
h.Write(nonce) |
|
||||||
h.Sum(resBuf[:0]) |
|
||||||
res3 := binary.BigEndian.Uint64(resBuf) & ((1 << diff) - 1) |
|
||||||
return res1 == res2 && res2 == res3 |
|
||||||
} |
|
||||||
|
|
||||||
func fulfilSha2BDay(nonce []byte, diff uint32, data []byte) []byte { |
|
||||||
// TODO make multithreaded if the difficulty is high enough.
|
|
||||||
// For light proof-of-work requests, the overhead of parallelizing is
|
|
||||||
// not worth it.
|
|
||||||
type Pair struct { |
|
||||||
First, Second uint64 |
|
||||||
} |
|
||||||
var i uint64 = 1 |
|
||||||
prefix := make([]byte, 8) |
|
||||||
resBuf := make([]byte, 32) |
|
||||||
lut := make(map[uint64]Pair) |
|
||||||
h := sha256.New() |
|
||||||
for { |
|
||||||
binary.BigEndian.PutUint64(prefix, i) |
|
||||||
h.Write(prefix) |
|
||||||
h.Write(data) |
|
||||||
h.Write(nonce) |
|
||||||
h.Sum(resBuf[:0]) |
|
||||||
res := binary.BigEndian.Uint64(resBuf) & ((1 << diff) - 1) |
|
||||||
pair, ok := lut[res] |
|
||||||
if ok { |
|
||||||
if pair.Second != 0 { |
|
||||||
ret := make([]byte, 24) |
|
||||||
binary.BigEndian.PutUint64(ret, pair.First) |
|
||||||
binary.BigEndian.PutUint64(ret[8:], pair.Second) |
|
||||||
copy(ret[16:], prefix) |
|
||||||
return ret |
|
||||||
} |
|
||||||
|
|
||||||
lut[res] = Pair{First: pair.First, Second: i} |
|
||||||
} else { |
|
||||||
lut[res] = Pair{First: i} |
|
||||||
} |
|
||||||
h.Reset() |
|
||||||
i++ |
|
||||||
} |
|
||||||
} |
|
Loading…
Reference in new issue