Reuse Dedis lab's kyber library for schnorr multi-sig

pull/55/head
Rongjian Lan 6 years ago
parent a142e2a853
commit b91f23c696
  1. 399
      crypto/cosi.go
  2. 109
      crypto/primitives.go
  3. 10
      crypto/suite.go

@ -0,0 +1,399 @@
/*
Package cosi implements the collective signing (CoSi) algorithm as presented in
the paper "Keeping Authorities 'Honest or Bust' with Decentralized Witness
Cosigning" by Ewa Syta et al. See https://arxiv.org/abs/1503.08768. This
package only provides the functionality for the cryptographic operations of
CoSi. All network-related operations have to be handled elsewhere. Below we
describe a high-level overview of the CoSi protocol (using a star communication
topology). We refer to the research paper for further details on communication
over trees, exception mechanisms and signature verification policies.
The CoSi protocol has four phases executed between a list of participants P
having a protocol leader (index i = 0) and a list of other nodes (index i > 0).
The secret key of node i is denoted by a_i and the public key by A_i = [a_i]G
(where G is the base point of the underlying group and [...] denotes scalar
multiplication). The aggregate public key is given as A = \sum{i P}(A_i).
1. Announcement: The leader broadcasts an announcement to the other nodes
optionally including the message M to be signed. Upon receiving an announcement
message, a node starts its commitment phase.
2. Commitment: Each node i (including the leader) picks a random scalar v_i,
computes its commitment V_i = [v_i]G and sends V_i back to the leader. The
leader waits until it has received enough commitments (according to some
policy) from the other nodes or a timer has run out. Let P' be the nodes that
have sent their commitments. The leader computes an aggregate commitment V from
all commitments he has received, i.e., V = \sum{j P'}(V_j) and creates a
participation bitmask Z. The leader then broadcasts V and Z to the other
participations together with the message M if it was not sent in phase 1. Upon
receiving a commitment message, a node starts the challenge phase.
3. Challenge: Each node i computes the collective challenge c = H(V || A || M)
using a cryptographic hash function H (here: SHA512), computes its
response r_i = v_i + c*a_i and sends it back to the leader.
4. Response: The leader waits until he has received replies from all nodes in
P' or a timer has run out. If he has not enough replies he aborts. Finally,
the leader computes the aggregate response r = \sum{j P'}(r_j) and publishes
(V,r,Z) as the signature for the message M.
*/
package crypto
import (
"errors"
"fmt"
"github.com/dedis/kyber"
)
// Commit returns a random scalar v, generated from the given suite,
// and a corresponding commitment V = [v]G. If the given cipher stream is nil,
// a random stream is used.
func Commit(suite Suite) (v kyber.Scalar, V kyber.Point) {
random := suite.Scalar().Pick(suite.RandomStream())
commitment := suite.Point().Mul(random, nil)
return random, commitment
}
// AggregateCommitments returns the sum of the given commitments and the
// bitwise OR of the corresponding masks.
func AggregateCommitments(suite Suite, commitments []kyber.Point, masks [][]byte) (sum kyber.Point, commits []byte, err error) {
if len(commitments) != len(masks) {
return nil, nil, errors.New("mismatching lengths of commitment and mask slices")
}
aggCom := suite.Point().Null()
aggMask := make([]byte, len(masks[0]))
for i := range commitments {
aggCom = suite.Point().Add(aggCom, commitments[i])
aggMask, err = AggregateMasks(aggMask, masks[i])
if err != nil {
return nil, nil, err
}
}
return aggCom, aggMask, nil
}
// Challenge creates the collective challenge from the given aggregate
// commitment V, aggregate public key A, and message M, i.e., it returns
// c = H(V || A || M).
func Challenge(suite Suite, commitment, public kyber.Point, message []byte) (kyber.Scalar, error) {
if commitment == nil {
return nil, errors.New("no commitment provided")
}
if message == nil {
return nil, errors.New("no message provided")
}
hash := suite.Hash()
if _, err := commitment.MarshalTo(hash); err != nil {
return nil, err
}
if _, err := public.MarshalTo(hash); err != nil {
return nil, err
}
hash.Write(message)
return suite.Scalar().SetBytes(hash.Sum(nil)), nil
}
// Response creates the response from the given random scalar v, (collective)
// challenge c, and private key a, i.e., it returns r = v + c*a.
func Response(suite Suite, private, random, challenge kyber.Scalar) (kyber.Scalar, error) {
if private == nil {
return nil, errors.New("no private key provided")
}
if random == nil {
return nil, errors.New("no random scalar provided")
}
if challenge == nil {
return nil, errors.New("no challenge provided")
}
ca := suite.Scalar().Mul(private, challenge)
return ca.Add(random, ca), nil
}
// AggregateResponses returns the sum of given responses.
func AggregateResponses(suite Suite, responses []kyber.Scalar) (kyber.Scalar, error) {
if responses == nil {
return nil, errors.New("no responses provided")
}
r := suite.Scalar().Zero()
for i := range responses {
r = r.Add(r, responses[i])
}
return r, nil
}
// Sign returns the collective signature from the given (aggregate) commitment
// V, (aggregate) response r, and participation bitmask Z using the EdDSA
// format, i.e., the signature is V || r || Z.
func Sign(suite Suite, commitment kyber.Point, response kyber.Scalar, mask *Mask) ([]byte, error) {
if commitment == nil {
return nil, errors.New("no commitment provided")
}
if response == nil {
return nil, errors.New("no response provided")
}
if mask == nil {
return nil, errors.New("no mask provided")
}
lenV := suite.PointLen()
lenSig := lenV + suite.ScalarLen()
VB, err := commitment.MarshalBinary()
if err != nil {
return nil, errors.New("marshalling of commitment failed")
}
RB, err := response.MarshalBinary()
if err != nil {
return nil, errors.New("marshalling of signature failed")
}
sig := make([]byte, lenSig+mask.Len())
copy(sig[:], VB)
copy(sig[lenV:lenSig], RB)
copy(sig[lenSig:], mask.mask)
return sig, nil
}
// Verify checks the given cosignature on the provided message using the list
// of public keys and cosigning policy.
func Verify(suite Suite, publics []kyber.Point, message, sig []byte, policy Policy) error {
if publics == nil {
return errors.New("no public keys provided")
}
if message == nil {
return errors.New("no message provided")
}
if sig == nil {
return errors.New("no signature provided")
}
if policy == nil {
policy = CompletePolicy{}
}
lenCom := suite.PointLen()
VBuff := sig[:lenCom]
V := suite.Point()
if err := V.UnmarshalBinary(VBuff); err != nil {
return errors.New("unmarshalling of commitment failed")
}
// Unpack the aggregate response
lenRes := lenCom + suite.ScalarLen()
rBuff := sig[lenCom:lenRes]
r := suite.Scalar().SetBytes(rBuff)
// Unpack the participation mask and get the aggregate public key
mask, err := NewMask(suite, publics, nil)
if err != nil {
return err
}
mask.SetMask(sig[lenRes:])
A := mask.AggregatePublic
ABuff, err := A.MarshalBinary()
if err != nil {
return errors.New("marshalling of aggregate public key failed")
}
// Recompute the challenge
hash := suite.Hash()
hash.Write(VBuff)
hash.Write(ABuff)
hash.Write(message)
buff := hash.Sum(nil)
k := suite.Scalar().SetBytes(buff)
// k * -aggPublic + s * B = k*-A + s*B
// from s = k * a + r => s * B = k * a * B + r * B <=> s*B = k*A + r*B
// <=> s*B + k*-A = r*B
minusPublic := suite.Point().Neg(A)
kA := suite.Point().Mul(k, minusPublic)
sB := suite.Point().Mul(r, nil)
left := suite.Point().Add(kA, sB)
if !left.Equal(V) {
return errors.New("recreated response is different from signature")
}
if !policy.Check(mask) {
return errors.New("the policy is not fulfilled")
}
return nil
}
// Mask represents a cosigning participation bitmask.
type Mask struct {
mask []byte
publics []kyber.Point
AggregatePublic kyber.Point
}
// NewMask returns a new participation bitmask for cosigning where all
// cosigners are disabled by default. If a public key is given it verifies that
// it is present in the list of keys and sets the corresponding index in the
// bitmask to 1 (enabled).
func NewMask(suite Suite, publics []kyber.Point, myKey kyber.Point) (*Mask, error) {
m := &Mask{
publics: publics,
}
m.mask = make([]byte, m.Len())
m.AggregatePublic = suite.Point().Null()
if myKey != nil {
found := false
for i, key := range publics {
if key.Equal(myKey) {
m.SetBit(i, true)
found = true
break
}
}
if !found {
return nil, errors.New("key not found")
}
}
return m, nil
}
// Mask returns a copy of the participation bitmask.
func (m *Mask) Mask() []byte {
clone := make([]byte, len(m.mask))
copy(clone[:], m.mask)
return clone
}
// Len returns the mask length in bytes.
func (m *Mask) Len() int {
return (len(m.publics) + 7) >> 3
}
// SetMask sets the participation bitmask according to the given byte slice
// interpreted in little-endian order, i.e., bits 0-7 of byte 0 correspond to
// cosigners 0-7, bits 0-7 of byte 1 correspond to cosigners 8-15, etc.
func (m *Mask) SetMask(mask []byte) error {
if m.Len() != len(mask) {
return fmt.Errorf("mismatching mask lengths")
}
for i := range m.publics {
byt := i >> 3
msk := byte(1) << uint(i&7)
if ((m.mask[byt] & msk) == 0) && ((mask[byt] & msk) != 0) {
m.mask[byt] ^= msk // flip bit in mask from 0 to 1
m.AggregatePublic.Add(m.AggregatePublic, m.publics[i])
}
if ((m.mask[byt] & msk) != 0) && ((mask[byt] & msk) == 0) {
m.mask[byt] ^= msk // flip bit in mask from 1 to 0
m.AggregatePublic.Sub(m.AggregatePublic, m.publics[i])
}
}
return nil
}
// SetBit enables (enable: true) or disables (enable: false) the bit
// in the participation mask of the given cosigner.
func (m *Mask) SetBit(i int, enable bool) error {
if i >= len(m.publics) {
return errors.New("index out of range")
}
byt := i >> 3
msk := byte(1) << uint(i&7)
if ((m.mask[byt] & msk) == 0) && enable {
m.mask[byt] ^= msk // flip bit in mask from 0 to 1
m.AggregatePublic.Add(m.AggregatePublic, m.publics[i])
}
if ((m.mask[byt] & msk) != 0) && !enable {
m.mask[byt] ^= msk // flip bit in mask from 1 to 0
m.AggregatePublic.Sub(m.AggregatePublic, m.publics[i])
}
return nil
}
// IndexEnabled checks whether the given index is enabled in the mask or not.
func (m *Mask) IndexEnabled(i int) (bool, error) {
if i >= len(m.publics) {
return false, errors.New("index out of range")
}
byt := i >> 3
msk := byte(1) << uint(i&7)
return ((m.mask[byt] & msk) != 0), nil
}
// KeyEnabled checks whether the index, corresponding to the given key, is
// enabled in the mask or not.
func (m *Mask) KeyEnabled(public kyber.Point) (bool, error) {
for i, key := range m.publics {
if key.Equal(public) {
return m.IndexEnabled(i)
}
}
return false, errors.New("key not found")
}
// CountEnabled returns the number of enabled nodes in the CoSi participation
// mask.
func (m *Mask) CountEnabled() int {
// hw is hamming weight
hw := 0
for i := range m.publics {
byt := i >> 3
msk := byte(1) << uint(i&7)
if (m.mask[byt] & msk) != 0 {
hw++
}
}
return hw
}
// CountTotal returns the total number of nodes this CoSi instance knows.
func (m *Mask) CountTotal() int {
return len(m.publics)
}
// AggregateMasks computes the bitwise OR of the two given participation masks.
func AggregateMasks(a, b []byte) ([]byte, error) {
if len(a) != len(b) {
return nil, errors.New("mismatching mask lengths")
}
m := make([]byte, len(a))
for i := range m {
m[i] = a[i] | b[i]
}
return m, nil
}
// Policy represents a fully customizable cosigning policy deciding what
// cosigner sets are and aren't sufficient for a collective signature to be
// considered acceptable to a verifier. The Check method may inspect the set of
// participants that cosigned by invoking cosi.Mask and/or cosi.MaskBit, and may
// use any other relevant contextual information (e.g., how security-critical
// the operation relying on the collective signature is) in determining whether
// the collective signature was produced by an acceptable set of cosigners.
type Policy interface {
Check(m *Mask) bool
}
// CompletePolicy is the default policy requiring that all participants have
// cosigned to make a collective signature valid.
type CompletePolicy struct {
}
// Check verifies that all participants have contributed to a collective
// signature.
func (p CompletePolicy) Check(m *Mask) bool {
return m.CountEnabled() == m.CountTotal()
}
// ThresholdPolicy allows to specify a simple t-of-n policy requring that at
// least the given threshold number of participants t have cosigned to make a
// collective signature valid.
type ThresholdPolicy struct {
thold int
}
// NewThresholdPolicy returns a new ThresholdPolicy with the given threshold.
func NewThresholdPolicy(thold int) *ThresholdPolicy {
return &ThresholdPolicy{thold: thold}
}
// Check verifies that at least a threshold number of participants have
// contributed to a collective signature.
func (p ThresholdPolicy) Check(m *Mask) bool {
return m.CountEnabled() >= p.thold
}

@ -1,109 +0,0 @@
package crypto
import (
"crypto/cipher"
)
// A Scalar kyber.y represents a scalar value by which
// a Point (group element) may be encrypted to produce another Point.
// This is an exponent in DSA-style groups,
// in which security is based on the Discrete Logarithm assumption,
// and a scalar multiplier in elliptic curve groups.
type Scalar interface {
// Equality test for two Scalars derived from the same Group
Equal(s2 Scalar) bool
// Set sets the receiver equal to another Scalar a
Set(a Scalar) Scalar
// Clone creates a new Scalar with same value
Clone() Scalar
// Set sets the receiver to a small integer value
SetInt64(v int64) Scalar
// Set to the additive identity (0)
Zero() Scalar
// Set to the modular sum of scalars a and b
Add(a, b Scalar) Scalar
// Set to the modular difference a - b
Sub(a, b Scalar) Scalar
// Set to the modular negation of scalar a
Neg(a Scalar) Scalar
// Set to the multiplicative identity (1)
One() Scalar
// Set to the modular product of scalars a and b
Mul(a, b Scalar) Scalar
// Set to the modular division of scalar a by scalar b
Div(a, b Scalar) Scalar
// Set to the modular inverse of scalar a
Inv(a Scalar) Scalar
// Set to a fresh random or pseudo-random scalar
Pick(rand cipher.Stream) Scalar
// SetBytes sets the scalar from a byte-slice,
// reducing if necessary to the appropriate modulus.
// The endianess of the byte-slice is determined by the
// implementation.
SetBytes([]byte) Scalar
}
// A Point kyber.y represents an element of a public-key cryptographic Group.
// For example,
// this is a number modulo the prime P in a DSA-style Schnorr group,
// or an (x, y) point on an elliptic curve.
// A Point can contain a Diffie-Hellman public key, an ElGamal ciphertext, etc.
type Point interface {
// Equality test for two Points derived from the same Group
Equal(s2 Point) bool
// Null sets the receiver to the neutral identity element.
Null() Point
// Set sets the receiver to this group's standard base point.
Base() Point
// Pick sets the receiver to a fresh random or pseudo-random Point.
Pick(rand cipher.Stream) Point
// Set sets the receiver equal to another Point p.
Set(p Point) Point
// Clone clones the underlying point.
Clone() Point
// Maximum number of bytes that can be embedded in a single
// group element via Pick().
EmbedLen() int
// Embed encodes a limited amount of specified data in the
// Point, using r as a source of cryptographically secure
// random data. Implementations only embed the first EmbedLen
// bytes of the given data.
Embed(data []byte, r cipher.Stream) Point
// Extract data embedded in a point chosen via Embed().
// Returns an error if doesn't represent valid embedded data.
Data() ([]byte, error)
// Add points so that their scalars add homomorphically
Add(a, b Point) Point
// Subtract points so that their scalars subtract homomorphically
Sub(a, b Point) Point
// Set to the negation of point a
Neg(a Point) Point
// Multiply point p by the scalar s.
// If p == nil, multiply with the standard base point Base().
Mul(s Scalar, p Point) Point
}

@ -0,0 +1,10 @@
package crypto
import "github.com/dedis/kyber"
// Suite specifies the cryptographic building blocks required for the cosi package.
type Suite interface {
kyber.Group
kyber.HashFactory
kyber.Random
}
Loading…
Cancel
Save